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Abstract

Although many fairness criteria have been proposed for decision making, their
long-term impact on the well-being of a population remains unclear. In this work,
we study the dynamics of population qualification and algorithmic decisions under
a partially observed Markov decision problem setting. By characterizing the
equilibrium of such dynamics, we analyze the long-term impact of static fairness
constraints on the equality and improvement of group well-being. Our results show
that static fairness constraints can either promote equality or exacerbate disparity
depending on the driving factor of qualification transitions and the effect of sensitive
attributes on feature distributions. We also consider possible interventions that can
effectively improve group qualification or promote equality of group qualification.
Our theoretical results and experiments on static real-world datasets with simulated
dynamics show that our framework can be used to facilitate social science studies.

1 Introduction

Automated decision making systems trained with real-world data can have inherent bias and exhibit
discrimination against disadvantaged groups. One common approach to alleviating the issue is to
impose fairness constraints on the decision such that certain statistical measures (e.g., true positive
rate, positive classification rate, etc.) across multiple groups are (approximately) equalized. However,
their effectiveness has been studied mostly in a static framework, where only the immediate impact of
the constraint is assessed but not its long-term consequences. Recent studies have shown that imposing
static fairness criteria intended to protect disadvantaged groups can actually lead to pernicious long-
term effects [33, 47]. These long-term effects are heavily shaped by the interplay between algorithmic
decisions and individuals’ reactions [34]: algorithmic decisions lead to changes in the underlying
feature distribution, which then feeds back into the decision making process. Understanding how this
type of coupled dynamics evolve is a major challenge [10].

Toward this end, we consider a discrete-time sequential decision process applied to a certain popula-
tion, where responses to the decisions made at each time step are manifested in changes in the features
of the population in the next time step. Our goal is to understand how (static) fairness criteria in this
type of decision making affect the evolution of group well-being and characterize any equilibrium
state the system may converge to. In particular, we will focus on myopic policies that maximize the
immediate utility under static fairness constraints, and examine their impact on different groups in
the long run.
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More specifically, we seek to study the dynamics of group qualification rates [30, 34, 37, 44] and
evaluate the long-term impact of various static fairness constraints imposed on decision making. We
examine whether these static fairness constraints mitigate or worsen the qualification disparity in
the long-run. Our work can be applied to a variety of applications such as recruitment and bank
lending. In these applications, an institute observes individuals’ features (e.g., credit scores), and
makes myopic decisions (e.g., issue loans) by assessing such features against some variables of
interest (e.g., ability to repay) which are unknown and unobservable to the institute when making
decisions. Individuals respond to the decisions by investing in effort to either improve or maintain
their qualification in the next time step. These actions collectively change the qualification rate of the
population. In summary, our main contributions are:

1. We analyze the equilibrium of qualification rates in different groups under a general class of
fairness constraints (Section 4). We use a Partially Observed Markov Decision Process (POMDP)
framework to model the sequential decision making in different scenarios (Section 3). Using this
model, we show that under our formulation optimal policies are of the threshold type and provide a
way to compute the threshold. We then prove the existence of an equilibrium (in terms of long-term
qualification rates) using threshold policies and provide sufficient conditions for a unique equilibrium.
2. We analyze the impact of fairness constraints on the disparity of qualification rates when the
equilibrium is unique (Section 5). Our findings suggest that the same fairness constraint can have
opposite impacts on the equilibrium depending on the underlying problem scenario.
3. We explore alternative interventions that can be effective in improving qualification rates at the
equilibrium and promoting equality across different groups (Section 6).
4. We examine our theory on synthetic Gaussian datasets and two real-world scenarios (Section 7).
Our experiments show that our framework can help examine findings cross domains and support
real-life policy making.

2 Related Work
Among existing works on fairness in sequential decision making problems [45], many assume that the
population’s feature distribution neither changes over time nor is it affected by decisions; examples
include studies on handling bias in online learning [6, 11–13, 16, 20, 28, 31] and bandits problems
[4, 8, 26, 27, 32, 35, 39, 43]. The goal of most of these work is to design algorithms that can learn
near-optimal policy quickly from the sequentially arrived data and the partially observed information,
and understand the impact of imposing fairness intervention on the learned policy (e.g., total utility,
learning rate, sample complexity, etc.)

However, recent studies [2, 7, 15] have shown that there exists a complex interplay between algorith-
mic decisions and individuals, e.g., user participation dynamics [19, 46, 47], strategic reasoning in
a game [23, 30], etc., such that decision making directly leads to changes in the underlying feature
distribution, which then feeds back into the decision making process. Many studies thus aim at
understanding the impacts of imposing fairness constraints when decisions affect underlying feature
distribution. For example, [33, 21, 29, 30] construct two-stage models where only the one-step
impacts of fairness intervention on the underlying population are examined but not the long-term
impacts in a sequential framework; [24, 38] focus on the fairness in reinforcement learning, of which
the goal is to learn a long-run optimal policy that maximizes the cumulative rewards subject to certain
fairness constraint; [19, 47] construct a user participation dynamics model where individuals respond
to perceived decisions by leaving the system uniformly at random. The goal is to understand the
impact of various fairness interventions on group representation.

Our work is most relevant to [23, 34, 37, 44], which study the long-term impacts of decisions on the
groups’ qualification states with different dynamics. In [23, 34], strategic individuals are assumed to
be able to observe the current policy, based on which they can manipulate the qualification states
strategically to receive better decisions. However, there is a lack of study on the influence of the
sensitive attribute on dynamics and impact of fairness constraints. Besides, in many cases, the
qualification states are affected by both the policy and the qualifications at the previous time step,
which is considered in [37, 44]. However, they assume that the decision maker have access to
qualification states and the dynamics of the qualification rates is the same in different groups, i.e.,the
equally qualified people from different groups after perceiving the same decision will have the same
future qualification state. In fact, the qualification states are unobservable in most cases, and the
dynamics can vary across different groups. If considering such difference, the dynamics can be much
more complicated such that the social equality can not be attained easily as concluded in [37, 44].
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Figure 1: The graphical representa-
tion of our model where gray shades
indicate latent variables.

Partially Observed Markov Decision Process (POMDP).
Consider two groups Ga and Gb distinguished by a sensi-
tive attribute S = s ∈ {a, b} (e.g., gender), with fractions
ps := P(S = s) of the population. At time t, an individual
with attribute s has feature2 Xt = x ∈ R determined by a
hidden qualification state Yt = y ∈ {0, 1}, and both are time-
varying. We adopt a natural assumption that an individual’s
attribute and current features constitute sufficient statistics, so
that conditioned on these, the decision is independent of past
features and decisions. This allows an institute (decision maker) to adopt a Markov policy: it makes
decisions Dt = d ∈ {0, 1} (reject or accept) using a policy 3πst (x) := P(Dt = 1 | Xt = x, S = s)
to maximize an instantaneous utilityRt(Dt, Yt), possibly subject to certain constraints. An individual
is informed of the decision, and subsequently takes actions that may change the qualification Yt+1

and features Xt+1. The latter is used to drive the institute’s decision at the next time step. This
process is shown in Fig. 1. Note that this model can be viewed as capturing either a randomly
selected individual repeatedly going through the decision cycles, or population-wide average when
all individuals are subject to the decision cycles. Thus, αst := P(Yt = 1 | S = s) is the probability of
an individual from Gs qualified at time t at the individual level, while being the qualification rate at
the group level. One of our primary goals is to study how αst evolves under different (fair) policies.

Feature generation process. In many real-world scenarios, equally qualified individuals from
different groups can have different features, potentially due to the different culture backgrounds and
physiological differences of different demographic groups. Therefore, we consider that at time step t,
given Yt = y and S = s, features Xt are generated by Gsy(x) := P(Xt = x | Yt = y, S = s). This
will be referred to as the feature distribution and assumed time-invariant. The convex combination
P(Xt = x | S = s) = αstG

s
1(x) + (1 − αst )Gs0(x) will be referred to as the composite feature

distribution of group Gs at time t.

Transition of qualification states. At time t, after receiving decision Dt, an individual takes actions
such as exerting effort/investment, imitating others, etc., which results in a new qualification Yt+1.
This is modeled by a set of transitions T syd := P(Yt+1 = 1 | Yt = y,Dt = d, S = s), which are
time-invariant and group-dependent. These transitions characterize individuals’ ability to maintain or
improve its qualification. Note that we don’t model individuals’ strategic responses as in [23, 30], but
rather use T syd to capture the overall effect; in other words, this single quantity may encapsulate the
individual’s willingness to exert effort, the cost of such effort, as well as the strength of community
support, etc. Specifically, T s0d (resp. T s1d) represents the probability of individuals from Gs who were
previously unqualified (resp. qualified) became (resp. remain) qualified after receiving decision
d ∈ {0, 1}. Note that the case when feature distributions or transitions are group-independent is a
special case of our formulation, i.e., by setting Gay = Gby or T ayd = T byd.

Fair myopic policy of an institute. A myopic policy πt at time t aims at maximizing the instan-
taneous expected utility/reward U(Dt, Yt) = E[Rt(Dt, Yt)], where the institute gains u+ > 0 by
accepting a qualified individual and incurs a cost u− > 0 by accepting an unqualified individual,

i.e., Rt(Dt, Yt) :=


u+, if Yt = 1 and Dt = 1

−u−, if Yt = 0 and Dt = 1

0, if Dt = 0

. A fair myopic policy maximizes the above

utility subject to a fairness constraint C. We focus on a set of group fairness constraints that equalize
certain statistical measure between Ga and Gb. A commonly studied (one-shot) fair machine learning

2For simplicity of exposition, our analysis is based on one-dimensional feature space. However, the
conclusions hold for high-dimensional features. This can be done by first mapping the feature space to a
one-dimensional qualification profile space, this extension is given in Appendix C.

3We use group-dependent policies so that the optimal policies can achieve the perfect fairness, i.e., certain
statistical measures are equalized exactly, which allows us to study the impact of fairness constraint precisely.
Although using group-dependent policies might be prohibited in some scenarios (e.g., criminal justice), our
qualitative conclusions are applicable to cases when two groups share the same policy, under which the
approximate fairness is typically attained to maximize utility.
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problem is to find (πat , π
b
t ) that solves the following constrained optimization,

maxπa,πb U(Dt, Yt) = paE[Rt(Dt, Yt)|S = a] + pbE[Rt(Dt, Yt)|S = b]

s.t. EXt∼PaC [πa(Xt)] = EXt∼PbC [π
b(Xt)] , (1)

where PsC is some probability distribution over features Xt and specifies the fairness metric C. Many
popular fairness metrics can be written in this form, e.g.,

1. Equality of Opportunity (EqOpt) [18]: this requires the true positive rate (TPR) to be equal,
i.e., P(Dt = 1|Yt = 1, S = a) = P(Dt = 1|Yt = 1, S = b). This is equivalent to
EXt|Yt=1,S=a[πat (Xt)] = EXt|Yt=1,S=b[π

b
t (Xt)], i.e., PsEqOpt(x) = Gs1(x).

2. Demographic Parity (DP) [5]: this requires the positive rate (PR) to be equal, i.e., P(Dt =
1|S = a) = P(Dt = 1|S = b). This is equivalent to EXt|S=a[πat (Xt)] = EXt|S=b[π

b
t (Xt)],

i.e., PsDP(x) = (1− αst )Gs0(x) + αstG
s
1(x).

We focus on this class of myopic polices in this paper, and refer to the solution to (1) as the optimal
policy. We further define qualification profile4, γst (x), the probability an individual with features x
from group Gs is qualified at t, i.e.,

γst (x) = P(Yt = 1 | Xt = x, S = s) =
1

Gs0(x)
Gs1(x) ( 1

αst
− 1) + 1

, x ∈ R. (2)

Then the utility obtained from the group Gs at time step t is given by E[Rt(Dt, Yt)|S = s] =
EXt|S=s[π

s
t (Xt)(γ

s
t (Xt)(u+ + u−)− u−)]. Detailed derivation is shown in Appendix E.

4 Evolution and Equilibrium Analysis of Qualification Rates

In this section, we first solve the one-shot optimization problem (1) (Sec. 4.1). We then show that
under the optimal policy, there exists an equilibrium of qualification rates in the long run, and that a
sufficient condition for its uniqueness is also introduced (Sec. 4.2).

4.1 Threshold policies are optimal

If an individual’s qualification is observable, the optimal policy is straightforward absent of fairness
constraints: accepting all qualified ones and rejecting the rest. When qualification is not observable,
the institute needs to infer from observed features and accepts those most likely to be qualified. Next
we show that under mild assumptions, optimal policies are in the form of threshold policies.
Assumption 1. Gsy(x) and the CDF,

∫ x
−∞Gsy(z)dz, are continuous in x ∈ R, ∀y, s; Gs1(x) and

Gs0(x) satisfy strict monotone likelihood ratio property, i.e., G
s
1(x)

Gs0(x) is strictly increasing in x ∈ R.

Assumption 2. ∀s ∈ {a, b}, PsC(x) is continuous in x ∈ R; P(X=x|S=s)
PsC(x) is non-decreasing in x ∈ R.

Assumption 1 says that an individual is more likely to be qualified as his/her feature value increases5.
We show that under Assumption 1, the optimal unconstrained policy is a threshold policy, i.e., ∀x, t
and s ∈ {a, b}, πst (x) = 1(x ≥ θst ) for some θst ∈ R. Assumption 2 limits the types of fairness
constraints, but is satisfied by many commonly used ones, including EqOpt and DP. We show that for
any fairness constraint C satisfying Assumption 2, the optimal fair policy is a threshold policy. The
proof of these results is given in Appendix F, which is consistent with Theorem 3.2 in [9]. Moreover,
under Assumption 1 and 2, a threshold as a function of qualification rates, θst := θs(αat , α

b
t), is

continuous and non-increasing in αat and αbt . In the next Lemma 1, we further characterize these
optimal (fair) thresholds in the optimal (fair) policies.
Lemma 1 (Optimal (fair) threshold). Let (γa(x), γb(x)) be a pair of qualification profiles for groups
Ga and Gb at t. Let threshold pairs (θa∗UN , θ

b∗
UN) and (θa∗C , θ

b∗
C ) be the unconstrained and fair optimal

thresholds under constraint C, respectively. Then we have γa(θa∗UN ) = γb(θb∗UN) = u−
u++u−

and

pa

(
γa(θa∗C )− u−

u++u−

)
P(X=θa∗C |S=a)
PaC (θa∗C ) + pb

(
γb(θb∗C )− u−

u++u−

)
P(X=θb∗C |S=b)

PbC(θb∗C )
= 0. (3)

4We assume the institute has perfect knowledge of γs
t (x). In practice, this is obtained via learning/estimating

αs
t and Gs

y(x) from data [25, 40].
5When qualification increases as the feature value x decreases, one can simply use the opposite of x.
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Here we have removed the subscript t since the thresholds are not t-dependent; they only depend on
current qualification rates. The solution to Eqn. (3) is the threshold pair (θa∗C , θ

b∗
C ) that satisfies the

fairness constraint
∫∞
θa∗C
PaC (x)dx =

∫∞
θb∗C
PbC(x)dx in Eqn. (1) while maximizing the expected utility

U(D,Y ) at time t. Under DP and EqOpt fairness, Eqn. (3) can be reduced to

paγ
a(θa∗DP ) + pbγ

b(θb∗DP) =
u−

u+ + u−
;

paα
a

γa(θa∗EqOpt)
+

pbα
b

γb(θb∗EqOpt)
=

paα
a

u−
u++u−

+
pbα

b

u−
u++u−

.

Lemma 1 also indicates the relation between the unconstrained and fair optimal polices, e.g., a group’s
qualification profile evaluated at the unconstrained threshold is the same as the weighted combination
of two groups’ qualification profiles evaluated at their corresponding fair thresholds under DP.

4.2 Evolution and equilibrium analysis

We next examine what happens as the institute repeatedly makes decisions based on the optimal
(fair) policies derived in Sec. 4.1, while individuals react by taking actions to affect their future
qualifications. We say the qualification rate of Gs is at an equilibrium if αst+1 = αst ,∀t ≥ to for some
to, or equivalently, if limt→∞ αst = αs is well-defined for some αs ∈ [0, 1]. Analyzing equilibrium
helps us understand the property of the population in the long-run. We begin by characterizing the
dynamics of qualification rates αst under policy πst as follows (see Appendix E for the derivation):

αst+1 = g0s(αat , α
b
t)·(1− αst ) + g1s(αat , α

b
t)·αst , s ∈ {a, b} , (4)

where gys(αat , α
b
t) := EXt|Yt=y,S=s

[
(1 − πst (Xt))T

s
y0 + πst (Xt)T

s
y1

]
depends on qualification

rates αat , α
b
t through the policy πst . When πst (x) = 1(x ≥ θst ), this reduces to gys(αat , α

b
t) :=

T sy0

∫ θst
−∞Gsy(x)dx+ T sy1

∫∞
θst
Gsy(x)dx , y ∈ {0, 1}. Denote gys(αat , α

b
t) := gys(θs(αat , α

b
t)).

Dynamics (4) says that the qualified people at each time consists of two parts: the qualified people in
the previous time step remain being qualified, and those who were unqualified in the previous time
step change to become qualified.

Theorem 1 below shows that for any transition and any threshold policy that are continuous in
qualification rates, the above dynamical system always has at least one equilibrium.
Theorem 1 (Existence of equilibrium). Consider a dynamics (4) with a threshold policy θs(αa, αb)
that is continuous in αa and αb. ∀T syd ∈ (0, 1), there exists at least one equilibrium (α̂a, α̂b).

While an equilibrium exists under any set of transitions, its specific property (e.g., quantity, value,
etc.) highly depends on transition probabilities which specify different user dynamics. We focus on
two scenarios given in the condition below.
Condition 1. ∀s ∈ {a, b}, (A) T s01 ≤ T s00 and T s11 ≤ T s10 ; (B) T s01 ≥ T s00 and T s11 ≥ T s10.

As mentioned, transitions T syd characterize the ability of individuals from Gs to maintain/improve
their future qualifications, this value summarizes individual’s behaviors. On one hand, an accepted
individual may feel less motivated to remain qualified (if it was) or become qualified (if it was not).
On the other hand, the accepted individual may have access to better resources or feel more inspired
to remain or become qualified. These competing factors (referred to later as the “lack of motivation”
effect and the “leg-up” effect, respectively) may work simultaneously, and the net effect can be
context dependent. Condition 1(A) (resp. Condition 1(B)) suggests that the first (resp. second) effect
is dominant for both qualified and unqualified individuals. There are two other combinations: (C)
T s01 ≥ T s00 and T s11 ≤ T s10; (D) T s01 ≤ T s00 and T s11 ≥ T s10, under which the qualified and unqualified
are dominant by different effects. These cases incur more uncertainty; slight changes in feature
distributions or transitions may result in opposite conclusions. More discussions are in Appendix D.

Given the existence of an equilibrium, Theorem 2 further introduces sufficient conditions for it to be
unique. Based on the unique equilibrium, we can evaluate and compare policies (Sec. 5), and design
effective interventions to promote long-term equality and/or the overall qualifications (Sec. 6).
Theorem 2 (Uniqueness of equilibrium). Consider a decision-making system with dynamics (4) and
either unconstrained or fair optimal threshold policy. Let hs(θs(αa, αb)) := 1−g1s(θs(αa,αb))

g0s(θs(αa,αb))
, s ∈

{a, b}. Under Assumptions 1 and 2, a sufficient condition for (4) to have a unique equilibrium is as
follows, ∀s ∈ {a, b}:
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1. Under Condition 1(A),
∣∣∂hs(θs(αa,αb))

∂α−s

∣∣ < 1, ∀αs ∈ [0, 1], where −s := {a, b} \ s;
2. Under Condition 1(B),

∣∣∂hs(θs(αa,αb))
∂α−s

∣∣ < 1 and
∣∣∂hs(θs(αa,αb))

∂αs

∣∣ < 1,∀αa, αb ∈ [0, 1].

These sufficient conditions can further be satisfied if for the qualified (y = 1) and the unqualified
(y = 0), transitions T sy1 and T sy0 are sufficiently close (see Corollary 1, Appendix F), i.e., policies
have limited influence on the qualification dynamics. It is worth noting that the conditions of Theorem
2 only guarantee uniqueness of equilibrium but not stability, i.e., it is possible that the qualification
rates oscillate and don’t converge under this discrete-time dynamics (see examples on COMPAS
data in Sec. 7). The uniqueness can be guaranteed and further attained if the dynamics (4) satisfies
L-Lipschitz condition with L < 1. However, Lipschitz condition is relatively stronger than the
condition in Theorem 2 (see the comparison in Appendix D).
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Figure 2: Illustration of {(αat , αbt)}t for a Gaussian case under
EqOpt, DP, UN optimal policies: each plot shows 6 sample paths
with each circle/diamond/star representing one pair of (αat , α

b
t).

Figure 2 illustrates trajectories
of qualification rates (αat , α

b
t)

and the equilibrium for a Gaus-
sian case under Condition 1(B)
(see details in Appendix B). Let
gys := gys(θs(αa, αb)), the
points (αa,αb) on the red, and
blue dashed curves satisfy αb =
g0b(1 − αb) + g1bαb and αa =
g0a(1−αa)+g1aαa, respectively.
Their intersection (black star) is
the equilibrium (α̂a, α̂b). The sufficient conditions in Theorem 2 guarantee these two curves have
only one intersection. Moreover, observe that these two curves split the plane {(αa, αb) : αa ∈
[0, 1], αb ∈ [0, 1]} into four parts, which can be used for determining how (αat , α

b
t) will change at t.

For example, if (αat ,αbt) falls into the left side of the blue dashed curve, then αat+1 > αat ; if (αat ,αbt)
falls into the lower side of the red dashed curve, then αbt+1 > αbt .

5 The Long-term Impact of Fairness Constraints

In this section, we analyze the long-term impact of imposing fairness constraints on the equality of
group qualification. We will do so in the presence of natural equality (and inequality) [37] where
equitable equilibria are attained naturally without imposing additional constraints (in our context, this
means attaining α̂aUN = α̂bUN using unconstrained polices).

Although there may exist multiple equilibria, in this section we will assume the conditions in Theorem
2 hold under Assumption 1 and 2 and limit ourselves to the unique equilibrium cases under DP and
EqOpt, thereby providing a theoretical foundation and an illustration of how their long-term impact
can be compared. As shown below, these short-term fairness interventions may not necessarily
promote long-term equity, and their impact can be sensitive to feature distributions and transitions. A
small change in either can lead to contrarian results, suggesting the importance of understanding the
underlying population.

Long-term impact on natural equality. When there is natural equality, an unconstrained optimal
policy will result in two groups converging to the same qualification rate, thus rendering fairness
constraints is unnecessary. The interesting question here is whether applying a fairness constraint can
disrupt the equality. The theorem below shows that the DP and EqOpt fairness will do harm if the
feature distributions are different.

Theorem 3. For any feature distribution Gsy(x) and ∀αUN ∈ (0, 1), there exist transitions {T syd}y,d,s
satisfying either Condition 1(A) or Condition 1(B) such that α̂aUN = α̂bUN = αUN. In this case, if
Gay(x) 6= Gby(x) (resp. Gay(x) = Gby(x)), then imposing either C = DP or EqOpt fair optimal
policies will violate (resp. maintain) equality, i.e., α̂aC 6= α̂bC (resp. α̂aC = α̂bC).

Theorem 3 shows that ∀αUN ∈ (0, 1), there exists model parameters under which αUN is the equilibrium
and natural equality is attained. Also, natural equality is not disrupted by imposing either fairness
constraint when feature distributions are the same across different groups (referred to as demographic-
invariant below). However, imposing either constraint will lead to unequal outcomes if feature
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distributions are diverse across groups (referred to as demographic-variant below), which is more
likely to happen in reality. Thus, in these natural equality cases, imposing fairness will often do harm.

Long-term impact on natural inequality. Natural inequality, i.e., α̂aUN 6= α̂bUN, is more common than
natural equality which only occurs under specific model parameters. This difference in qualification
rates at equilibrium typically stems from the fact that either feature distributions or transitions or
both are different across different groups. Thus, below we study the impact of imposing fairness
by considering these two sources of inequality separately, and we aim to examine whether fairness
constraints can address the inequality caused by each. Let disadvantaged group be the group with a
lower qualification rate at equilibrium.

Demographic-invariant feature distribution with demographic-variant transition. In this case, we have
the same feature distributions but different transitions in different groups, i.e., Gsy = Gby, T

a
yd 6= T byd.

A real-world example is college admission based on ACT/SAT scores: given the same qualification
state, score distributions may be the same regardless of the applicant’s socio-economic status, but the
economically advantaged may be able to afford more investments and effort to improve their score
after a rejection.
Theorem 4. Under Condition 1(A), DP and EqOpt fairness exacerbate inequality, i.e., |α̂aC − α̂bC | ≥
|α̂aUN − α̂bUN|; under Condition 1(B), DP and EqOpt fairness mitigate inequality, i.e., |α̂aC − α̂bC | ≤
|α̂aUN − α̂bUN|. Moreover, the disadvantaged group remains disadvantaged in both cases, i.e., (α̂aUN −
α̂bUN)(α̂

a
C − α̂bC) ≥ 0.

This theorem shows that imposing fairness only
helps when the “leg-up” effect is more promi-
nent than the “lack of motivation” effect; alter-
natively, this suggests that when the “lack of mo-
tivation” effect is dominant, imposing fairness
should be accompanied by other support struc-
ture to dampen this effect (e.g., by helping those accepted to become or remain qualified). Theorem 4
is illustrated in the plot to the right, where transitions satisfy Condition 1(A)-(B) and Gay(x) = Gby(x)
is Gaussian distributed.Each plot includes 3 pairs of red/blue dashed curves corresponding to 3 policies
(EqOpt, DP, UN). Points (αa, αb) on these curves satisfy αb = g0b(αa, αb)·(1−αb)+g1b(αa, αb)·αb
and αa = g0a(αa, αb)·(1− αa) + g1a(αa, αb)·αa, respectively. Each intersection (colored star) is
an equilibrium (α̂aC , α̂

b
C); the length of colored segments represents |α̂aC − α̂bC |. The black circle is the

intersection of all three blue/red curves.

Demographic-variant feature distribution with demographic-invariant transition. In this case, we have
the same transitions and different feature distributions in different groups, i.e., Gsy 6= Gby, T

a
yd = T byd.

In the same example of college admission this is a case where the ACT/SAT scores are biased against
a certain group but there is no difference in how different groups react to the decision. Here, we
will focus on a class of feature distributions where those qualified have the same feature distribution
regardless of group membership, while those unqualified from Gb are more likely to have lower
features than those unqualified from Ga. This is given in the condition below.

Condition 2. Gsy(x) is continuous in x ∈ R; Ga1(x) = Gb1(x),∀x ∈ R;
Ga0(x) and Gb0(x) satisfy strict monotone likelihood ratio property, i.e.,
Ga0 (x)

Gb0(x)
is strict increasing in x ∈ R.

x

Condition 2 also implies that
∫ x
−∞Gb0(z)dz ≥

∫ x
−∞Ga0(z)dz,∀x ∈ R. Let x̂ be defined such that

Gb0(x̂) = Ga0(x̂) holds, which is unique. An example satisfying Condition 2 is shown on the right.

Theorem 5. Under Condition 1(B) and Condition 2, if u+

u−
≥ Gs0(x̂)

Gs1(x̂)
1−T10

T00
, we have

• α̂aUN > α̂bUN and α̂aUN − α̂bUN > α̂aEqOpt − α̂bEqOpt ≥ 0 hold, i.e., EqOpt fairness always mitigates
inequality and the disadvantaged group Gb remains disadvantaged.

• DP fairness may either (1) mitigate inequality, i.e., α̂aUN − α̂bUN > α̂aDP − α̂bDP ≥ 0; or (2) flip the
disadvantaged group from Gb to Ga, i.e., α̂bDP ≥ α̂aDP.

Because Ga and Gb only differ inGs0(x), the condition in Thm 5 ensures at least one group has enough
unqualified people to be accepted and can be satisfied if benefit u+ is sufficiently larger than cost u−.
We see that in this case the comparison is much more complex depending on the model parameters.
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6 Effective interventions
As discussed, imposing static fairness constraints is not always a valid intervention in terms of its
long-term impact. In some cases it reinforces existing disparity; even when it could work, doing it
right can be very hard due to its sensitivity to problem parameters. In this section, we present several
alternative interventions that can be more effective in inducing more equitable outcomes or improving
overall qualification rates in the long run. We shall assume that the sufficient conditions of Theorem
2 hold under Assumption 1 and 2 so that the equilibrium is unique.

Policy intervention. In many instances, preserving static fairness at each time t is important, for
short-term violations may result in costly lawsuits [1]. Proposition 1 below shows that using sub-
optimal fair policies instead of the optimal ones can improve overall qualification in the long run.

Proposition 1. Let (θaC , θ
b
C), (θa

′

C , θ
b′

C ) be thresholds satisfying fairness constraint C under the optimal
and an alternative policy, respectively. Let (α̂aC , α̂

b
C), (α̂

a′

C , α̂
b′

C ) be the corresponding equilibrium.

• If θs
′

C (αa, αb) > θsC(α
a, αb), ∀αs ∈ [0, 1] under Condition 1(A), then α̂s

′

C > α̂sC , ∀s ∈ {a, b};
• If θs

′

C (αa, αb) < θsC(α
a, αb), ∀αs ∈ [0, 1] under Condition 1(B), then α̂s

′

C > α̂sC , ∀s ∈ {a, b}.

Note that the sacrifice is in instantaneous utility, not necessarily in total utility in the long run (see an
example in proof of Proposition 1, Appendix F). If static fairness need not be maintained at all times,
then we can employ separate policies for each group, and Proposition 2 below shows that under
certain conditions on transitions, threshold policies leading to equitable equilibrium always exist.

Proposition 2. Let Is :==
[ 1−max{T s11,T

s
10}

max{T s01,T s00}
,

1−min{T s11,T
s
10}

min{T s01,T s00}
]
, s ∈ {a, b}. Under Condition 1(A) or

1(B), if Ia ∩ Ib 6= ∅, then ∀α̂ ∈ Ia ∩ Ib, there exist threshold policies θs(αs), ∀αs ∈ [0, 1], under
which αst → α̂,∀s ∈ {a, b}, i.e., equitable equilibrium is attained; if Ia ∩ Ib = ∅, then there is no
threshold policy that can result in equitable equilibrium.

Proposition 2 also indicates that when two groups’ transitions are significantly different, manipulating
policies cannot achieve equality. In this case, the following intervention can be considered.

Transition Intervention. Another intervention is to alter the value of transitions, e.g., by establishing
support for both the accepted and rejected. Proposition 3 shows that the qualification rate α̂s at
equilibrium can be improved by enhancing individuals’ ability to maintain/improve qualification,
which is consistent with the empirical findings in loan repayment [41, 17, 22] and labor markets [14].
Proposition 3. ∀s ∈ {a, b}, increasing any transition probability T syd, d ∈ {0, 1}, y ∈ {0, 1} always
increases the value of equilibrium qualification rates α̂s.

7 Experiments

(a) D-invariant transitions (b) D-variant transitions

Figure 3: Results on the FICO dataset: Points are the equilibria
of repayment rates in GAA,GC under Condition 1(B) with dif-
ferent transitions. Arrows indicate the direction of increasing
T s01; a more transparent point represents the smaller value of
T s10. In panel (a), TAAyd = TCyd, while in panel (b), TAAyd < TCyd.

We conducted experiments on both
Gaussian synthetic datasets and real-
world datasets. We present syn-
thetic data experiments in Appendix
B and the results using real-world
datasets here. These are static, one-
shot datasets, which we use to cre-
ate a simulated dynamic setting as
detailed below.

Loan repayment study. We use
the FICO score dataset [42] to study
the long-term impact of fairness
constraints EqOpt and DP and other
interventions on loan repayment
rates in the Caucasian group GC and
the African American group GAA.
With the pre-processed data in [18],
we simulate a dataset with loan re-
payment records and credits scores. We first compute the initial qualification (loan repayment)
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rates and estimate the feature distributions Gsy(x) with beta distributions based on the simulated
data. Then, we compute the optimal UN, EqOpt, DP threshold according to Eqn. (3). Consequently,
with the dynamics (4), we update the qualification rates in both groups. This process proceeds and
qualification rates in both groups change over time.

Our results show consistent findings with studies in loan repayment literature [17, 41]. Specifically,
[41] studied the loan repayment in group lending and pointed out that in practice effective training
and leadership among the groups who were issued loans can increase their willingness to pay and
improve the group repayment rate. Similar conclusion is also suggested by [17]. In our model, these
interventions can be regarded as stimulating transitions (i.e., Ty1) to improve the future repayment
rates. And the scenarios under such intervention would satisfy Condition 1(B). Fig. 3 shows that under
Condition 1(B), increasing the transition T s01 always increases qualification rates, and DP in general
can result in a more equitable equilibrium than EqOpt. Fig. 3(a) shows that in Demographic-invariant
(D-invariant) transition cases (TAAyd = TCyd): (1) GAA always remains as disadvantaged group; (2)
when T10 is small, the inequality under UN optimal policies is small and the intervention on T01 only
has minor effects on equality; when T10 is large (darker blue points), varying T01 can affect disparity
significantly; (3) imposing DP attains equitable equilibria in general, which is robust to transitions and
consistent with the conclusion in [37]; (4) when T10 is small, imposing EqOpt exacerbates inequality
as T01 increases; while T10 is sufficient large, equality can be attained and robust to transitions. In
Fig. 3(b), it shows that in D-variant transition cases, by setting TAAyd < TCyd, the inequality between
GAA and GC further gets reinforced. In summary, the effectiveness of such intervention (increasing
T01) on promoting equality highly depends on the value of T10 and policies.

Table 1: osi∗/osiH /osiL is the percentage that oscillation
occurs among 125 set of different transitions under policy
UN∗/UNθH /UNθL . Among transitions that lead to stable
equilibrium, Col 2/Col 3 shows the percentage that UNθH /
UNθL results in lower recidivism compared with UN∗.

α̂θH < α̂∗ α̂θL < α̂∗ osi∗ osiH osiL
A 0 1 0.29 0.12 0.36
B 0.99 0.01 0 0 0
C 0.37 0.28 0 0 0
D 0.79 0.63 0.06 0 0.13

The COMPAS data. Our second set
of experiments is conducted on a multi-
variate recidivism prediction dataset from
Correctional Offender Management Profil-
ing for Alternative Sanctions (COMPAS)
[3]. We again use this static and high-
dimensional dataset to create a simulated
decision-making process as the FICO ex-
periments. Specifically, from the raw data
we calculate the initial qualification (re-
cidivism) rate and train optimal classifier
using a logistic regression model, based
on which recidivism rate is updated according to Eqn. (4) under a given set of transitions. In the con-
text of recidivism prediction, we consider all the possible types of transitions under an unconstrained
policy, i.e., transitions satisfying conditions 1(A)-(D). The classifier decision here corresponds to
incarceration based on predicted likelihood of recidivism: the higher the predicted recidivism, the
more likely an incarceration decision. In subsequent time steps, the data is re-sampled from the
raw data proportional to the updated recidivism rates. This process repeats and the group recidi-
vism rates change over time. Our results here primarily serve to highlight the complexity in such
a decision-making system. In particular, we see that an equilibrium may not exist and under some
transitions the qualification rate may oscillate. Specifically, Table 1 shows that Prop. 1 holds under
Condition 1(A)-(B); there is no oscillation under Condition 1(B)-(C); under Condition 1(C)-(D),
there is more uncertainty which is discussed in Appendix D. More results on the oscillation can be
found in Appendix B.

8 Conclusion
In this paper, we studied the long-term impact of fairness constraints (e.g., DP and EqOpt) on group
qualification rates. By casting the problem in a POMDP framework, we conducted equilibrium
analysis. Specifically, we first identified sufficient conditions for the existence and uniqueness of
equilibrium, under which we compared different fairness constraints regarding their long-term impact.
Our findings show that the same fairness constraint can have opposite impact depending on the
underlying problem scenarios, which highlights the importance of understanding real-world dynamics
in decision making systems. Our experiments on real-world static datasets with simulated dynamics
also show that our framework can be used to facilitate social science studies. Our analysis has focused
on scenarios with a unique equilibrium; scenarios with multiple equilibria or oscillating states remain
an interesting direction of future research.

9



Acknowledgement

X. Zhang, Y. Liu and M. Liu have been supported by the NSF under grants CNS-1616575, CNS-
1646019, CNS-1739517, IIS-2007951, and by the ARO under contract W911NF1810208. R. Tu
would like to acknowledge the funding support of the Swedish e-Science Research Centre and the
material suggestion regarding the social impact of polices given by Yating Zhang. Part of the work
was done when R. Tu was a visiting student in Microsoft Research, Cambridge, and he would like
to acknowledge Microsoft’s travel support. K. Zhang would like to acknowledge the support by the
United States Air Force under Contract No. FA8650-17-C-7715.

Broader Impact

In this paper, we focus on the (un)fairness issue that arises in automated decision-making systems
and aim to understand the long-term impact of algorithmic (fair) decisions on the well-being of
different sub-groups in a population. Our partially observed sequential decision making framework is
applicable to a wide range of domains (e.g., lending, recruitment, admission, criminal justice, etc.). By
conducting an equilibrium analysis and evaluating the long-term impact of different fairness criteria,
our results provide a theoretical foundation that can help answer questions such as whether/when
imposing short-term fairness constraints are effective in promoting long-term equality.

First of all, our results can help policymakers (e.g., companies, banks, governments, etc.) in their
decision making process by highlighting the potential pitfalls of commonly used static fairness criteria
and providing guidance on how to design effective interventions that can avoid such unintended
consequences and result in positive long-term societal impacts.

Secondly, our results may be useful to research in fields outside of the computer science community.
The experiments on static real-world datasets have shown consistent findings with literature in social
sciences [36, 17, 41]. Although these empirical results are obtained using simulated dynamics due to
a lack of real datasets, they may provide insights and theoretical supports for research in other fields.

Lastly, while this work is limited to binary decisions, the main take-away can be applied in other
applications such as computer vision, natural language processing, etc., using more complicated
classifiers such as DNN. We hope that our work will encourage researchers in these domains
to similarly consider discrimination risks when developing techniques, and raise awareness that
static fairness constraint may not suffice and long-term fairness cannot be designed in a vacuum
without considering the human element. We thus emphasize the importance of performing real-time
measurements and developing proper fair classifiers from dynamic datasets.

Having mentioned the potential positive impact of our work, we also want to point out the limitations
in our model and analysis. Firstly, in this work we use a set of transitions T syd to capture individuals’
abilities to improve/maintain future qualifications, and our analysis and conclusions rely on this
set of values. In practice, however, these quantities can be extremely hard to measure due to the
complexity of human behaviors and environmental factors. In addition, as we have noted in the paper,
in some cases the conclusion can be highly sensitive to minor changes in these transitions. Secondly,
our theoretical results have focused on scenarios with a unique equilibrium, while in practice the
situation can be much more complicated (multiple equilibria or no equilibria), as demonstrated by
the oscillations we see in the COMPAS simulation study. Thus, it is worthwhile for future work to
consider these more complex cases. Lastly, due to the lack of dynamic datasets, our experiments
are performed over static real-world datasets with simulated dynamics. Thus, an accurate model of
real-world dynamics is needed when deploying our method for practical decision making.
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A Notations

Gs demographic group, s ∈ {a, b}
Xt feature at t, X ∈ Rd
Yt true qualification state at t, Yt ∈ {0, 1}
S sensitive attribute S ∈ {a, b}
ps group proportion of s, i.e., ps = P(S = s)
Dt institute’s decision at t, Dt ∈ {0, 1}
πst (x) policy for Gs at t, i.e., πst (x) = P(Dt = 1 | Xt = x, S = s)
Gsy(x) feature distribution of unqualified (y = 0) or qualified (y = 1) people from Gs , i.e.,

P(Xt = x | Yt = y, S = s)
Gsy(x) CDF of Gsy(x), i.e., Gsy(x) =

∫ x
−∞Gsy(z)dx

PsC(x) a probability distribution over Xt that specifies the fairness metric C
αst qualification rate of Gs at t, i.e., P(Yt = 1 | S = s)
γst (x) qualification profile of Gs at t, i.e., P(Yt = 1 | Xt = x, S = s)
T syd transition probability of Gs, i.e., P(Yt+1 = 1 | Yt = y,Dt = d, S = s)
u+ benefit the institute gains by accepting a qualified individual
u− cost incurred to the institute by accepting an unqualified individual
θsC threshold in a threshold policy for Gs under constraint C, i.e., πst (x) = 1(x ≥ θsC)
α̂sC qualification rate of Gs at the equilibrium under policy with constraint C ∈ {UN, DP, EqOpt}

B Additional results on experiments

Gaussian distributed synthetic data. We first verify the conclusions in Section 4 and 5 using the
synthetic data, where Xt | Yt = y, S = s ∼ N (µsy, (σ

s)2).

In Section 4, Figure 2 illustrates sample paths of {(αat , αbt)}t under EqOpt, DP, UN optimal policies.
The specific parameters are as follows: [µa0 , µ

a
1 , µ

b
0, µ

b
1] = [−5, 5,−5, 5], [σa, σb] = [5, 5], u+

u−
= 1,

pa = pb = 0.5, [T a00, T
a
01, T

a
10, T

a
11] = [0.4, 0.5, 0.5, 0.9], [T b00, T

b
01, T

b
10, T

b
11] = [0.1, 0.5, 0.5, 0.7].

Table 2 and 3 illustrate the impacts of EqOpt and DP fairness on the equilibrium, where each column
shows the value of α̂aC − α̂bC when C = UN, EqOpt, DP under different sets of parameters. Specifically,
in Table 2, pa = pb = 0.5, u+

u−
= 1, [µs0, µ

s
1, σ

s] = [−5, 5, 5],∀s ∈ {a, b} and transitions satisfying
either Condition 1(A) or 1(B) are randomly generated; in Table 3, transitions satisfying Condition
1(B) and Gsy(x) that satisfy Condition 2 are randomly generated, u+

u−
also satisfies the condition in

Theorem 5. These results are consistent with Theorem 4 and 5.

Table 2: α̂aC − α̂bC when C = UN, EqOpt, DP: Gay(x) = Gby(x) and T ayd 6= T byd.
Condition 1(A)

UN (×10−2) -18.45 16.89 19.82 -7.21 -16.34 -26.56 16.66 -6.03 -38.63
EqOpt (×10−2) -21.11 19.13 21.78 -7.62 -18.56 -29.21 18.14 -6.28 -41.52
DP (×10−2) -27.98 23.11 25.65 -8.90 -23.11 -33.22 21.09 -6.66 -43.35

Condition 1(B)
UN (×10−2) -19.05 18.18 -0.70 -58.80 -40.91 61.30 12.82 -44.67 2.66
EqOpt (×10−2) -18.40 17.98 -0.64 -57.62 -34.50 48.66 12.35 -41.43 2.61
DP (×10−2) -17.52 17.73 -0.57 -55.62 -28.97 36.10 11.69 -37.97 2.57

Table 3: α̂aC − α̂bC when C = UN, EqOpt, DP: Gay(x) 6= Gby(x) and T ayd = T byd under Condition 1(B).
UN (×10−2) 1.88 26.35 2.12 0.38 5.64 12.35 11.70 0.20 4.12
EqOpt (×10−2) 0.57 17.43 1.75 0.32 5.05 7.81 7.21 0.18 1.68
DP (×10−4) 16.26 18.29 -5.94 -0.93 -2.25 1.47 0.92 -1.68 -0.80
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(a) D-invariant transitions (b) D-variant transitions

Figure 5: Results on the FICO dataset: Points are the repayment rates of GAA,GC at the equilibria
under Condition 1(B) with different sets of transitions. Arrows indicate the direction of increasing
T s01; a more transparent point represents the smaller value of T s10. In panel (a), TAAyd = TCyd, while in
panel (b), TAAyd < TCyd.

Caucasian repaid

Caucasian defaulted

African-American repaid

African-American defaulted

Figure 4: The feature distributions: the
scores are rescaled so that they are be-
tween 0 and 1.

FICO score data. From the pre-processed FICO dataset,
we got P(X = x | S = s) and P(Y = 1 | X = x, S = s).
In this experiment, we consider two demographic groups,
12% the African American GAA and 88% the Caucasian
GC . According to the empirical feature distributions, we
can first simulate the FICO dataset with credit scoresX , re-
payment Y , and sensitive attribute S. We then compute the
initial qualification (repayment) rates (αAA0 , αC0 ), which
is 0.34 in GAA and 0.76 in GC ; and fit Beta distributions
to get the feature distribution P(X = x | S = s, Y = y),
as shown in Fig. 4. Since the feature distributions are the
Beta distributions, we can compute optimal UN, EqOpt, DP
thresholds directly using Eqn. (3) and update the repay-
ment rates based on dynamics (4). This process proceeds
and (αAAt , αCt ) changes over time.

We then consider the demographic-invariant (D-invariant) and demographic-variant (D-variant)
transitions and examine the impact of the transition interventions. Specifically, in the context of loan
repayment prediction and group lending [41], the transitions would satisfy Condition 1(B). Fig. 5
illustrates the equilibria (α̂AA, α̂C) under different sets of transitions. Their specific values are listed
as follows, where the system has an equilibrium in all cases.

D-invariant: T00 = 0.1, T11 = 0.9, T10, T01 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
D-variant: TAA00 = 0.1, TAA11 = 0.9, TAA10 , TAA01 ∈ {0.20, 0.36, 0.53, 0.69, 0.85}

TC00 = 0.4, TC11 = 0.9, TC10, T
C
01 ∈ {0.45, 0.55, 0.65, 0.75, 0.85}

COMPAS data. The COMPAS dataset is a high-dimensional dataset with mixed data types (e.g.,
continuous, binary, and categorical). The number of samples is 5278. There are 10 features and two
demographic groups: 60% African American (GAA) and 40% Caucasian (GC ). The qualification rate
in COMPAS is the recidivism rate. The initial recidivism rates are 52.3% in GAA and 39.1% in GC .

Due to the complexity of the feature distribution, the system can be either in the equilibrium state
or oscillate between two recidivism rates in the long-run. Since the feature distribution is fixed and
approximated from the COMPAS dataset, we investigate that under which transitions, the system
is in an equilibrium state under unconstrained optimal policy. For this purpose, it is sufficient to
study the demographic-invariant transitions TAA = TC and consider the entire population without
distinguishing two groups; moreover, in the context of recidivism prediction, the transitions would
satisfy Condition 1 (A). Therefore, we consider T00 and T10 taking the values 0.1, 0.3, 0.5, 0.7 and
0.9. Figure 6 shows the results when T01 = k×T00 and T11 = k×T10. We find that when Corollary
1 is satisfied, e.g., when k ≥ 0.5, most of the corresponding systems have a unique equilibrium (blue
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Figure 6: The oscillation level of recidivism rates in the long run is represented by the size of red
circles, of which the bigger one represents severer oscillation. The blue dots represent the scenarios
with a unique equilibrium. T00 and T10 axes represent their values respectively; k axis represents the
scalar k, where T01 = k × T00 and T11 = k × T10.
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(a) T01 = 0.1× T00.
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(b) T01 = 0.3× T00.
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(c) T01 = 0.5× T00.
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(d) T01 = 0.7× T00.
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(e) T01 = 0.9× T00.

Figure 7: The oscillation level of recidivism rates under different transitions. In each panel, scalar k
denotes the ratio, of which T11 = k × T10.

dot). Moreover, when T00 ≤ 0.5, the system is also mostly in the unique equilibrium state. For the
other transitions, the system oscillates between two states (red circle). We also show the results under
all the combinations of T01 and T11 in Figure 7.

Next, we study the impact of policy interventions in cases with equilibrium. We randomly choose the
transitions under which the system has an equilibrium and then apply the unconstrained policy with
optimal threshold (classifier threshold 0.5), a higher and a lower threshold (classifier thresholds 0.8
and 0.2 respectively) compared to the optimum respectively. The results are show in Table 4.

Table 4: Recidivism rates in the long run. UN∗: unconstrained policy (UN) with the optimal threshold;
UNθH : UN with a higher threshold; UNθL : UN with a lower threshold.

UN∗ UNθH UNθL
α̂1 0.164 0.166 0.147
α̂2 0.343 0.356 0.307
α̂3 0.230 0.246 0.162
α̂4 0.306 0.3415 0.156
α̂5 0.162 0.166 0.140
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C Generalization to high-dimensional feature space

All analysis and conclusions in this paper can be generalized to high-dimensional feature space
x ∈ Rd, where the qualification profile of Gs is defined as γst (x) = P(Yt = 1 | Xt = x, S =
s) ∈ [0, 1], x ∈ Rd. Different from one-dimensional case where decisions are made based on
features, here decisions are made based on γst (x), i.e., high-dimensional features are mapped into a
one-dimensional space first and decisions are made in this transformed space. The threshold policy
in this case becomes πst (x) = 1(γst (x) ≥ θst ) with threshold θst ∈ [0, 1]. Let γs

−1

t (θ) ⊂ Rd be
defined as the preimage of θ under qualification profile γst , then all analysis in one-dimensional
settings can be adjusted using γs

−1

t (·). For example, Assumption 1 in high-dimensional case can
be adjusted to the following: ∀s ∈ {a, b}, given any two thresholds 0 ≤ θsj < θsk ≤ 1, we have

γs
−1

t (Ks) ⊂ γs−1

t (Js), where Js = {θ : θ ∈ [θsj , 1]} and Ks = {θ : θ ∈ [θsk, 1]}; in other words, if
an individual can get accepted by a policy with the higher threshold, it must be accepted if a policy
with a lower threshold was used. Note that this assumption is still mild and always hold if Gsy(x)
belongs to exponential family.

Specifically, if ∀s ∈ {a, b},∀y ∈ {0, 1}, distribution of X|Y = y, S = s belongs to exponential
family and can be written as Gsy(x) := B(x) exp

(
〈η(ωsy), ξ(x)〉 − A(ωsy)

)
for some functions

B(·), η(·), ξ(·), A(·), where 〈x,y〉 represents inner product of two vectors x,y and ωsy is the parame-

ter. Then Gs0(x)
Gs1(x) = exp

(
−〈ηs, ξ(x)〉+As

)
where ηs := η(ωs1)− η(ωs0) and As := A(ωs1)−A(ωs0).

Then

γs
−1

t (Js) = {x : γst (x) ≥ θsj} = {x : 〈ηs, ξ(x)〉 ≥ As + log
( 1
αst
− 1

1
θsj
− 1

)
}

If θsj < θsk, then log
( 1
αst
−1

1
θs
j
−1

)
< log

( 1
αst
−1

1
θs
k
−1

)
. We have γs

−1

t (Ks) ⊂ γs−1

t (Js).

D Discussions

Transitions under Condition 1(C) or 1(D). This paper mainly focus on transitions satisfying
Condition 1(A) and 1(B). As mentioned in Section 4.2, there are the other two combinations: (C)
T s01 ≥ T s00 and T s11 ≤ T s10; (D) T s01 ≤ T s00 and T s11 ≥ T s10, in which there is more uncertainty when
conducting equilibrium analysis. The slight changes in the feature distributions or the values of
transitions may change conclusions significantly.

Because the system has equilibrium if there is solution to balanced equations defined as Eqn. (5) in
Appendix F, i.e., 1

αs − 1 = 1−g1s(θs(αa,αb))
g0s(θs(αa,αb))

, ∀s ∈ {a, b}. Since

1− g1s(θs(αa, αb))

g0s(θs(αa, αb))
=

1− (T s10Gs1(θs(αa, αb)) + T s11

(
1−Gs1(θs(αa, αb))

)
)

T s00Gs0(θs(αa, αb)) + T s01

(
1−Gs0(θs(αa, αb))

) .

Under optimal (fair) policies and Condition 1(A) or 1(B), 1−g1s(θs(αa,αb))
g0s(θs(αa,αb))

is guaranteed to be
either decreasing or increasing in αs. This monotonicity is critical to determine the properties (e.g.,
uniqueness, quantity, value, etc.) of the consequent equilibrium (α̂aC , α̂

b
C) so that impacts of different

fairness can be compared. In contrast, under Condition 1(C) or 1(D), 1−g1s(θs(αa,αb))
g0s(θs(αa,αb))

is no longer
monotonic, and its intersection with function 1

αs − 1, i.e., equilibrium, is thus hard to characterize.
As a consequence, the impacts of different fairness constraints cannot be compared in general.

Comparison between sufficient conditions in Theorem 2 and Lipschitz condition. Let a pair
of qualification rats of Ga,Gb be noted as α := (αa, αb) ∈ [0, 1]× [0, 1], and let mapping Φ : [0, 1]×
[0, 1] → [0, 1] × [0, 1] be defined such that dynamical system (4) can be written as αt+1 = Φ(αt).
Then this dynamical system has an equilibrium α̂ if Φ(α̂) = α̂. According to Banach Fixed Point
Theorem, such equilibrium exists and is unique if the mapping Φ satisfies L-Lipschitz condition
with L < 1, i.e., Φ is a contraction mapping. Specifically, d(Φ(α0),Φ(α1)) ≤ Ld(α0, α1) for some
distance function d and Lipschitz constant L < 1.
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While Lipschitz condition also ensures the uniqueness of equilibrium, the sufficient conditions
given in Theorem 2 are weaker. Use unconstrained optimal policies as an example, in this case
dynamics of two groups can be decoupled because threshold θs(αa, αb) used in Gs is independent of
qualification of the other group α−s. Therefore, sufficient condition |∂h

s(θs(αa,αb))
∂α−s | = 0 < 1 under

Condition 1(A) always holds. In contrast, for dynamics of Gs after decoupling αst+1 = Φs(αst ) =
g0s(θs(αst ))(1− αst ) + g1s(θs(αst ))α

s
t , Φs is not necessarily a contraction mapping.

Although sufficient conditions in Theorem 2 are weaker, they do not guarantee the stability of the
equilibrium. In contrast, Lipschitz condition with L < 1 ensures the unique equilibrium is also stable,
i.e., we have (αat , α

b
t)→ (α̂a, α̂b) given an arbitrary initial state (αa0 , α

b
0).

E Derivations

Qualification profile of a group.

γst (x) = P(Yt = 1|Xt = x, S = s) =
1

P(Xt=x,Yt=0,S=s)
P(Xt=x,Yt=1,S=s) + 1

=
1

P(Xt=x|Yt=0,S=s)P(Yt=0|S=s)
P(Xt=x|Yt=1,S=s)P(Yt=1|S=s) + 1

=
1

P(Xt=x|Yt=0,S=s)
P(Xt=x|Yt=1,S=s) ( 1

P(Yt=1|S=s) − 1) + 1

=
1

Gs0(x)
Gs1(x) ( 1

αst
− 1) + 1

.

Utility of an institute.

U(Dt, Yt) = E[Rt(Dt, Yt)] = P(S = a)E[Rt(Dt, Yt)|S = a] + P(S = b)E[Rt(Dt, Yt)|S = b]

Under policy πs, we have

E[Rt(Dt, Yt)|S = s] = P(Dt = 1, Yt = 1|S = s)u+ − P(Dt = 1, Yt = 0|S = s)u−

=

∫
x

(
P(Dt = 1, Yt = 1, Xt = x|S = s)u+ − P(Dt = 1, Yt = 0, Xt = x|S = s)u−

)
dx

=

∫
x

P(Xt = x|S = s)
(
P(Dt = 1 | Xt = x, S = s)P(Yt = 1 | Xt = x, S = s)u+

−P(Dt = 1 | Xt = x, S = s)P(Yt = 0 | Xt = x, S = s)u−

)
dx

=

∫
x

P(Xt = x|S = s)
(
πs(x)γst (x)u+ − πs(x)(1− γst (x))u−

)
dx

= EXt|S=s[π
s(Xt)(γ

s
t (Xt)(u+ + u−)− u−)].

Therefore,

U(Dt, Yt) = paEXt|S=a[πa(Xt)(γ
a
t (Xt)(u+ + u−)− u−)] + pbEXt|S=b[π

b(Xt)(γ
b
t (Xt)(u+ + u−)− u−)]
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Dynamics of qualification rate.

αst+1 = P(Yt+1 = 1 | S = s) =

∫
x

∑
y,a

P(Yt+1 = 1, Yt = y,Dt = d,Xt = x | S = s)dx

=

∫
x

∑
y,a

P(Yt+1 = 1 | Yt = y,Xt = x,Dt = d, S = s)P(Dt = d | Xt = x, S = s)

P(Xt = x | Yt = y, S = s)P(Yt = y | S = s)dx

=

∫
x

∑
a

{
P(Yt+1 = 1 | Yt = 0, Xt = x,Dt = d, S = s)

P(Dt = d | Xt = x, S = s)P(Xt = x | Yt = 0, S = s)
}
P(Yt = 0 | S = s)dx

+

∫
x

∑
d

{
P(Yt+1 = 1 | Yt = 1, Xt = x,Dt = d, S = s)

P(Dt = d | Xt = x, S = s)P(Xt = x | Yt = 1, S = s)
}
P(Yt = 1 | S = s)dx

= EXt|Yt=0,S=s

[
(1− πst (Xt))T

s
00 + πst (Xt)T

s
01

]
(1− αst )

+ EXt|Yt=1,S=s

[
(1− πst (Xt))T

s
10 + πst (Xt)T

s
11

]
αst

= g0s(αat , α
b
t) · (1− αst ) + g1s(αat , α

b
t) · αst

F Proofs

We define balanced equations and functions for the rest proofs. The dynamics system (4) can reach
equilibrium if αst = αst−1 holds. Therefore, the system has equilibrium if there exists solution to the
balanced equations defined as (5).

1

αa
− 1 =

1− g1a(θa(αa, αb))

g0a(θa(αa, αb))
;

1

αb
− 1 =

1− g1b(θb(αa, αb))

g0b(θb(αa, αb))
. (5)

By removing subscript t and writing threshold θs as a function of αa, αb, we have gys(θs(αa, αb)) =

T sy0Gsy(θs(αa, αb)) + T sy1

(
1−Gsy(θs(αa, αb))

)
, denote CDF of Gsy(x) as Gsy(θ) =

∫ θ
−∞Gsy(x)dx.

∀s ∈ {a, b}, let −s := {a, b} \ s. ∀α−s ∈ [0, 1], define balanced set w.r.t. dynamics as Ψs(α−s) :=

{αs : 1
αs − 1 = 1−g1s(θa(αs,α−s))

g0s(θs(αs,α−s)) }. If the set size |Ψs(α−s)| = 1 holds ∀α−s ∈ [0, 1], we define
balanced functions w.r.t. dynamics as ψs : [0, 1]→ [0, 1] with ψs(α−s) ∈ Ψs(α−s),∀α−s ∈ [0, 1].

The proof that the threshold policies are optimal under our formulation.

Proof. In the following proof, we focus on optimal policy at t and omit the subscript t.

First consider unconstrained optimal policy, noted as πsUN, we have,

πsUN = arg max
πs

EX|S=s[π
s(X)(γs(X)(u+ + u−)− u−)]

Therefore, the optimal policy satisfies πsUN(x) = 1(γs(x) ≥ u−
u++u−

). Since γs(x) is monotonically
increasing in x under Assumption 1, πsUN(x) = 1(x ≥ (γs)−1( u−

u++u−
)) is threshold policy where

(γs)−1(·) denotes the inverse function of γ(·).

Now consider optimal fair policy under some fairness constraint C satisfying Assumption 2. Consider
any pair of policies (πa, πb) that satisfies fairness constraint C, and define fairness constant c =
EX∼PaC [πa(X)] = EX∼PbC [π

b(X)] ∈ [0, 1]. To show the optimal fair policy is threshold policy, we
will show that there always exists a pair of threshold policies (πad , π

b
d) such that EX∼PaC [πad(X)] =

EX∼PbC [π
b
d(X)] = c, i.e., the fairness constant is the same as (πa, πb), and the utility of (πad , π

b
d) is

no less than the utility attained under (πa, πb).
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∀s ∈ {a, b}, let threshold policy πsd be defined such that πsd(x) = 1(x ≥ θsd) and EX∼PsC [π
s
d(X)] = c

are satisfied. Such policy must exist and the threshold is given by θsd = (PsC)−1(1 − c), where
PsC(θs) =

∫ θs
−∞ P

s
C(x)dx is CDF of PsC and (PsC)−1(·) is the inverse of it.

Let Rπsd(D,Y ), Rπs(D,Y ) denote the utility attained under policies πsd, πs respectively. Next we
will show that ∀s ∈ {a, b}, E[Rπsd(D,Y ) | S = s] ≥ E[Rπs(D,Y ) | S = s] holds, i.e.,

EX|S=s[π
s
d(X)(γs(X)(u+ + u−)− u−)] ≥ EX|S=s[π

s(X)(γs(X)(u+ + u−)− u−)]

Since πsd(x) = 1(x ≥ θsd), we have the followings,

EX|S=s[π
s
d(X)(γs(X)(u+ + u−)− u−)] =

∫∞
θsd

(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

EX|S=s[π
s(X)(γs(X)(u+ + u−)− u−)] =

∫∞
θsd

(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

+
∫ θsd
−∞ πs(x)(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

−
∫∞
θsd

(1− πs(x))(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

Since EX∼PsC [π
s(X)] = c = EX∼PsC [π

s
d(X)], we have∫ ∞

θsd

(1− πs(x))PsC(x)dx =

∫ θsd

−∞
πs(x)PsC(x)dx (6)

Under Assumption 2, P(X=x|S=s)
PsC(x) is non-decreasing. Since γs(x) = αs

Gs1(x)
P(X=x|S=s) is non-

decreasing and 1 − γs(x) = (1 − αs) Gs0(x)
P(X=x|S=s) is non-increasing, we have Gs1(x)

P(X=x|S=s) is non-

decreasing and Gs0(x)
P(X=x|S=s) is non-increasing. Therefore,

(γs(x)(u+ + u−)− u−)
P(X = x | S = s)

PsC(x)

= αs
Gs1(x)

PsC(x)
u+ − (1− αs)G

s
0(x)

PsC(x)
u−

= αs
Gs1(x)

P(X = x | S = s)

P(X = x | S = s)

PsC(x)
u+ − (1− αs) Gs0(x)

P(X = x | S = s)

P(X = x | S = s)

PsC(x)
u−

is non-decreasing in x. Combine with Eqn. (6), we have the followings,∫ θsd

−∞
πs(x)(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

=

∫ θsd

−∞
πs(x)(γs(x)(u+ + u−)− u−)

P(X = x | S = s)

PsC(x)
PsC(x)dx

≤
∫ θsd

−∞
πs(x)(γs(θsd)(u+ + u−)− u−)

P(X = θsd | S = s)

PsC(θsd)
PsC(x)dx

=

∫ ∞
θsd

(1− πs(x))(γs(θsd)(u+ + u−)− u−)
P(X = θsd | S = s)

PsC(θsd)
PsC(x)dx

≤
∫ ∞
θsd

(1− πs(x))(γs(x)(u+ + u−)− u−)
P(X = x | S = s)

PsC(x)
PsC(x)dx

=

∫ ∞
θsd

(1− πs(x))(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx.

Therefore, the following holds ∀s ∈ {a, b},
EX|S=s[π

s
d(X)(γs(X)(u+ + u−)− u−)] ≥ EX|S=s[π

s(X)(γs(X)(u+ + u−)− u−)].

It shows that the utility attained under threshold policy (πad , π
b
d) is no less than the utility of (πa, πb),

which concludes that the optimal fair policy (πaC , π
b
C) must be threshold policies.
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Lemma 2 below further shows that the optimal threshold policy θs(αa, αb) is continuous and non-
increasing in αa and αb.

Lemma 2. Let
(
θa(αa, αb), θb(αa, αb)

)
be a pair of solutions to Eqn. (3) under αa, αb. ∀s ∈ {a, b},

if G
s
1(x)
PsC(x) and Gs0(x)

PsC(x) are continuous everywhere in x, then θs(αa, αb) is continuous in both αa and αb.

Moreover, under Assumption 2, θs(αa, αb) is non-increasing in αa and αb.

Proof. To prove that a sufficient condition under which θs(αa, αb) is continuous in αa, αb ∈ [0, 1] is
that G

s
1(x)
PsC(x) and Gs0(x)

PsC(x) are continuous everywhere in x, we define a function fs(θs, αa, αb):

fs(θs, αa, αb) = (γs(θs)− u−
u+ + u−

)
P(X = θs | S = s)

PsC(θs)

= [αsu+G
s
1(θs) + αsu−G

s
0(θs)− u−Gs0(θs)]

1

PsC(θs)

= [αs
Gs1(θs)

PsC(θs)
u+ + (αs − 1)

Gs0(θs)

PsC(θs)
u−].

According to Equation (3), we have pafa(θa, αa, αb) + pbf
b(θb, αa, αb) = 0.

Given any αa and αb, and any constant k, let θ̃si be one solution to fs(θs, αa, αb) = k, where
i = 1, ..., N and N is the number of solutions. Firstly, we show that θ̃si (α

a, αb) is continuous
in αa and αb, for any i ∈ {1, ..., N}. Because Gs1(x)

PsC(x) and Gs0(x)
PsC(x) are continuous, fs(θs, αa, αb) is

continuous in αa, αb, and θs. Therefore, ∀ε > 0, ∃δ > 0 such that for all |αa′ − αa| < δ and
|αb′ − αb| < δ =⇒ |θ̃s′i − θ̃si | < ε. Thus, θ̃si (α

a, αb) is continuous in αa and αb, ∀i ∈ {1, ..., N}.

Next, we show that given αa and αb, the solutions to pafa(θa, αa, αb) + pbf
b(θb, αa, αb) = 0

under fairness constraint C are continuous in αa and αb ∈ [0, 1]. Under fairness constraints in
Equation (1), θa = φC(θ

b) holds for some continuous function φC(·). Consequently, we have
paf

a(φC(θ
b), αa, αb)+pbf

b(θb, αa, αb) = 0. Because fs(·, ·, ·) and φC(·) are continuous functions,
with the same reasoning, givenαa andαb, the solutions to pafa(φC(θ

b), αa, αb)+pbf
b(θb, αa, αb) =

0 are continuous in αa and αb. In other words, θsi (α
a, αb) is continuous.

Under Assumption 2, fs(θs, αa, αb) and θs(αa, αb) are continuous. We then prove that if G
s
1(x)
PsC(x) is

non-decreasing and Gs0(x)
PsC(x) is non-increasing in x, then θs(αa, αb) is non-increasing in αa and αb.

Let (φC(θ
b), θb) be a pair that satisfies fairness constraint, where φC(·) is some continuous and strictly

increasing function, then the optimal one is the pair that satisfies Equation (3) as follows:

pa(γa(φC(θ
b))− u−

u++u−
)P(X=φC(θb)|S=a)

PaC (φC(θb))
+ pb(γ

b(θb)− u−
u++u−

)P(X=θb|S=b)

PbC(θb)

= pa

[
αa

Ga1 (φC(θb))
PaC (φC(θb))

u+ + (αa − 1)
Ga0 (φC(θb))
PaC (φC(θb))

u−

]
+ pb

[
αb

Gb1(θb)

PbC(θb)
u+ + (αb − 1)

Gb0(θb)

PbC(θb)
u−

]
= 0.

Note that ∀s ∈ {a, b}, LHS of above equation is strictly increasing in αs because the coefficient of
αs is positive. Because Gs1(x)

PsC(x) is non-decreasing and Gs0(x)
PsC(x) is non-increasing in x, G

s
1(x)
PsC(x) −

Gs0(x)
PsC(x) is

non-decreasing in x. As αs increases, both Ga1 (φC(θb))
PaC (φC(θb))

− Ga0 (φC(θb))
PaC (φC(θb))

and Gb1(θb)

PbC(θb)
− Gb0(θb)

PbC(θb)
must not

increase so that the optimal fair equation can be maintained. It requires that both θb and θa = φC(θ
b)

must not increase. In other words, ∀s ∈ {a, b}, θs(αa, αb) must be non-increasing in αa and αb.

The proof of Lemma 1.

Proof. In the following proof, we focus on optimal policy at t and omit the subscript t.
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First consider unconstrained optimal policy. Under threshold policy,

θs∗UN = arg max
θs

EX|S=s[π
s(X)(γs(X)(u+ + u−)− u−)]

= arg max
θs

∫ ∞
θs

(γs(x)(u+ + u−)− u−)P(X = x | S = s)dx

Since γs(x) is monotonically increasing in x under Assumption 1, θs∗UN satisfies γs(θs∗UN ) = u−
u++u−

.

Now consider optimal policy under fairness constraint, to satisfy constraint C,
∫∞
θa
PaC (x)dx =∫∞

θb
PbC(x)dx should hold. Denote CDF PsC(θs) =

∫ θs
−∞ P

s
C(x)dx, then for any pair (θa, θb) that is

fair, we have θa = (PaC)−1PbC(θb) = φC(θ
b) hold for some strictly increasing function φC(·). Denote

u = PbC(θb) and θa = (PaC)−1(u), the following holds,

dφC(θb)
dθb

=
d(PaC)−1PbC(θb)

dθb
=

d(PaC)−1(u)
du

du
dθb

= 1
(PaC)′((PaC)−1(u))

du
dθb

=
(PbC)′(θb)
(PaC)′(θa) =

PbC(θb)
PaC (θa) .

Denote fs(x) := (γs(x)(u+ + u−)− u−)P(X = x | S = s), then we have

θb∗C = arg max
θb
U(D,Y ) = arg max

θb

(
pa

∫ ∞
φC(θb)

fa(x)dx+ pb

∫ ∞
θb

f b(x)dx

)
.

Let F (θb) := pa
∫∞
φC(θb)

fa(x)dx+ pb
∫∞
θb
f b(x)dx. Because γs(x) is monotonically increasing in

x under Assumption 1, the optimal θb∗C satisfies

dF (θb)

dθb

∣∣∣
θb=θb∗C

= −pafa(φC(θ
b))
dφC(θ

b)

dθb
− pbf b(θb)

∣∣∣
θb=θb∗C

= −pa(γa(φC(θ
b∗
C ))(u+ + u−)− u−)P(X = φC(θ

b∗
C ) | S = a)

PbC(θb∗C )

PaC (φC(θb∗C ))

−pb(γb(θb∗C )(u+ + u−)− u−)P(X = θb∗C | S = b)

= 0.

Therefore,

pa(γa(θa∗C )(u+ + u−)− u−)
P(X=θa∗C |S=a)
PC(θa∗C ) + pb(γ

b(θb∗C )(u+ + u−)− u−)
P(X=θb∗C |S=b)

PC(θb∗C )
= 0.

The proof of Theorem 1.

Proof. ∀s ∈ {a, b}, define function ls(αs) := 1
αs − 1 and hs(θs(αa, αb)) := 1−g1s(θs(αa,αb))

g0s(θs(αa,αb))
,

hs(θs(αa, αb)) =
1− (T s10Gs1(θs(αa, αb)) + T s11

(
1−Gs1(θs(αa, αb))

)
)

T s00Gs0(θs(αa, αb)) + T s01

(
1−Gs0(θs(αa, αb))

) .

Firstly, we prove that given a fixed α−s ∈ [0, 1] there must exist at least one αs ∈ (0, 1) such that
hs(θs(α−s, αs)) = ls(αs), s ∈ {a, b}, −s = {a, b} \ s.

Since Gsy(x) is continuous in x, and θs(αa, αb) is continuous in αa and αb, Gsy(θs(αa, αb)) is
continuous in αa and αb. Therefore, hs(θs(αa, αb)) is continuous in αa and αb.

Moreover, g1s(θs(αa, αb)) is the convex combination of T s11 and T s10, and g0s(θs(αa, αb)) is the
convex combination of T s01 and T s00, the following holds ∀αa ∈ [0, 1], αb ∈ [0, 1],

min{T s10, T
s
11} ≤ g1s(θs(αa, αb)) ≤ max{T s10, T

s
11} ;

min{T s00, T
s
01} ≤ g0s(θs(αa, αb)) ≤ max{T s00, T

s
01} ,

which implies 0 <
1−max{T s10,T

s
11}

max{T s00,T s01}
≤ hs(θs(αa, αb)) ≤ 1−min{T s10,T

s
11}

min{T s00,T s01}
< +∞.
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Furthermore, ls(αs) := 1
αs − 1 is continuous and strictly decreasing in αs, and

lim
αs→0

ls(αs) = +∞; lim
αs→1

ls(αs) = 0,

Given a fixed αa ∈ [0, 1], because hb(θb(αa, αb)) is continuous over αb ∈ [0, 1] and with value

varying between 1−max{T b10,T
b
11}

max{T b00,T b01}
and 1−min{T b10,T

b
11}

min{T b00,T b01}
, and lb(αb) is continuous with value varying

from +∞ to 0, there must exist at least one αb ∈ (0, 1) such that hb(θb(αa, αb)) = lb(αb). Similarly,
given a fixed αb ∈ [0, 1], there must exist at least one αa ∈ (0, 1) such that ha(θa(αa, αb)) = la(αa).

Secondly, we prove that all the solutions (αa, αb) and (αa, αb) are on continuous curves in the 2D
plane {(αa, αb) : αa ∈ [0, 1], αb ∈ [0, 1]}.

According to the continuity of ls(·) and hs(·), we have ∀αa ∈ [0, 1], limαa′→αa l
a(αa

′
) = la(αa);

furthermore, ∀αa ∈ [0, 1] and ∀θai ∈ {θa : la(αa) = ha(θa)}, limθa
′
i →θai

ha(θa
′

i ) = ha(θai ).

Thus, ∀ε > 0, ∃δ > 0, such that ∀αa ∈ [0, 1], |αa′ − αa| < δ =⇒ |θa′i − θai | < ε. Consequently,
∀ε > 0, ∃δ′ > 0 and ∃δ > 0, such that ∀αa ∈ [0, 1], |αa′ − αa| < δ =⇒ |θa′i − θai | < δ′

=⇒ |αb′i − αbi | < ε, the last statement is because of the continuity of θa(αa, αb); in other words,
∀αa ∈ [0, 1], limαa′→αa α

b′

i = αbi , where i = 1, ..., N . Therefore, (αa, αb) is on a set of continuous
curves with αb varying from 0 to 1. Similarly, one can prove that (αa, αb) is also on a set of
continuous curves with αa varying from 0 to 1.

Finally, we show the existence of equilibrium (α̂a, α̂b).

Consider a 2D plane {(αa, αb) : αa ∈ [0, 1], αb ∈ [0, 1]}, and C1 = {(αa, αb)} and C2 = {(αa, αb)}
that are two sets of continuous curves in the plane defined earlier. It is straightforward to see that there
is at least one curve among C1 whose αb varies from 0 to 1 and at least one curve among C2 whose
αa varies from 0 to 1. These two continuous curves must have at least one intersection. Moreover,
this intersection (α̂a, α̂b) satisfies hb(θb(α̂a, α̂b)) = lb(α̂b) and ha(θa(α̂a, α̂b)) = la(α̂a), is an
equilibrium of system.

Moreover, we also realized that the proof can also be done by using Brouwer’s Fixed Point Theorem
in topology.

The proof of Theorem 2.

Proof. Following the proof of Theorem 1,

hs(θs(αa, αb)) =
1− g1s(θs(αa, αb))

g0s(θs(αa, αb))
=

1− (T s10Gs1(θs(αa, αb)) + T s11

(
1−Gs1(θs(αa, αb))

)
)

T s00Gs0(θs(αa, αb)) + T s01

(
1−Gs0(θs(αa, αb))

) .

Note that ∀y ∈ {0, 1}, T sy0Gsy(θs(αa, αb)) + T sy1

(
1−Gsy(θs(αa, αb))

)
is the convex combination

of T sy0 and T sy1 with CDF Gsy(θs(αa, αb)) as the weight. Because Gsy(θs(αa, αb)) is continuous and
non-decreasing in θs(αa, αb), under Condition 1(A), hs(θs(αa, αb)) is non-decreasing in θs(αa, αb);
while under Condition 1(B), hs(θs(αa, αb)) is non-increasing in θs(αa, αb).

Under unconstrained optimal policy or optimal fair policy with constraint C satisfying Assumption 1
and 2, θs(αa, αb) is non-increasing in αa, αb. Therefore, under Condition 1(A), hs(θs(αa, αb)) is
non-decreasing in αa, αb, while under Condition 1(B), hs(θs(αa, αb)) is non-increasing in αa, αb.
Moreover,

Under Condition 1(A): 0 <
1− T s10

T s00

≤ hs(θs(αa, αb)) ≤ 1− T s11

T s01

< +∞

Under Condition 1(B): 0 <
1− T s11

T s01

≤ hs(θs(αa, αb)) ≤ 1− T s10

T s00

< +∞

First consider the case when Condition 1(A) is satisfied.

Because function ls(αs) := 1
αs − 1 is continuous and strictly decreasing from +∞ to 0 over

αs ∈ [0, 1], ∀s ∈ {a, b}. Thus, given any fixed αb ∈ [0, 1], strictly decreasing function la(αa) and
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non-decreasing function ha(θa(αa, αb)) has exactly one intersection, i.e., ∃ only one αa such that
ha(θa(αa, αb)) = la(αa). ∀αb, the set Ψa(αb) = {αa : ha(θa(αa, αb)) = la(αa)} has only one
element, and they constitute continuous function αa = ψa(αb) (balanced function). Similarly, ∀αa,
set Ψb(αa) = {αb : hb(θb(αa, αb)) = lb(αb)} also has only one element, which forms continuous
function αb = ψb(αa).

Because given any αa, ha(θa(αa, αb)) is non-decreasing in αb, as αb increases, the intersection
with la(αa) is non-increasing. Therefore, ψa(αb) is non-increasing in αb. Similarly, ψb(αa) is also
non-increasing in αa.

On the 2D plane {(αa, αb) : αa ∈ [0, 1], αb ∈ [0, 1]}, two curves C1 = {(αa, αb) : αa =
ψa(αb), αb ∈ [0, 1]} and C2 = {(αa, αb) : αb = ψb(αa), αa ∈ [0, 1]} are both continuous and
non-increasing. One sufficient condition to guarantee C1 and C2 have exact one intersection, is that
|dψ

a(αb)
dαb

| < 1,∀αb ∈ [0, 1] and |dψ
b(αa)
dαa | < 1,∀αa ∈ [0, 1]. In the followings, we show these

sufficient conditions will hold if |∂h
a(θa(αa,αb))

∂αb
| < 1 and |∂h

b(θb(αa,αb))
∂αa | < 1,∀αa, αb.

Denote u := ha(θa(ψa(αb), αb)), because la(ψa(αb)) = ha(θa(ψa(αb), αb)),∀αb,

dψa(αb)

dαb
=

d(la)−1(u)

dαb
=
d(la)−1(u)

du

du

dαb
=

1

(la)′((la)−1(u))

du

dαb
= −((la)−1(u))2 du

dαb
.

Because (la)−1(u) = ψa(αb) ∈ [0, 1],−((la)−1(u))2 ∈ [−1, 0]. Moreover, because of the condition
|dh

a(θa(αa,αb))
dαb

| < 1, we have ∣∣∣dψa(αb)

dαb

∣∣∣ < 1.

Similarly, we can show that |dψ
b(αa)
dαa | < 1 holds ∀αa if |∂h

b(θb(αa,αb))
∂αa | < 1. Therefore, C1, C2 have

only one intersection, the equilibrium (α̂a, α̂b) is unique.

Now consider the case when Condition 1(B) is satisfied.

Because dls(αs)
dαs = − 1

(αs)2 < −1,∀αs ∈ (0, 1), and −1 ≤ ∂hs(θs(αa,αb))
∂αs ≤ 0 for any fixed

α−s ∈ [0, 1]. Strictly decreasing function ls(αs) and non-increasing function hs(θs(αa, αb)) has
exactly one intersection. Therefore, ∀αb, balanced set Ψa(αb) = {αa : ha(θa(αa, αb)) = la(αa)}
has only one element, and they constitute continuous function αa = ψa(αb) (balanced function).
Similarly, ∀αb, set Ψa(αb) = {αa : ha(θa(αa, αb)) = la(αa)} also has only one element, which
forms continuous function αa = ψa(αb).

Because given any αa, ha(θa(αa, αb)) is non-increasing in αb. As αb increases, the intersection
with la(αa) is non-decreasing. Therefore, ψa(αb) is non-decreasing in αb. Similarly, ψb(αa) is also
non-decreasing in αa.

On the 2D plane {(αa, αb) : αa ∈ [0, 1], αb ∈ [0, 1]}, two curves C1 = {(αa, αb) : αa =
ψa(αb), αb ∈ [0, 1]} and C2 = {(αa, αb) : αb = ψb(αa), αa ∈ [0, 1]} are both continuous and
non-decreasing. One sufficient condition to guarantee C1 and C2 have exact one intersection, is
that dψ

a(αb)
dαb

< 1,∀αb ∈ [0, 1] and dψb(αa)
dαa < 1,∀αa ∈ [0, 1]. Using the same analysis as the case

under Condition 1(A), we can show these sufficient conditions will hold if | ∂h
a(θa(αa,αb))

∂αb
|< 1 and

| ∂h
b(θb(αa,αb))
∂αa |< 1,∀αa, αb.

Therefore, C1, C2 have only one intersection, the equilibrium (α̂a, α̂b) is unique.

The proof of Corollary 1.

Corollary 1. For any feature distribution {Gsy(x)}s,y, suppose that
∣∣∂Gsy(θs(αa,αb))

∂αu

∣∣ ≤ My holds
for some constant My ∈ [0,∞), ∀y ∈ {0, 1},∀u ∈ {a, b}. Under either Condition 1(A) or 1(B),
∃εsy > 0 such that for any transitions that satisfy |T sy1 − T sy0| < εsy, s ∈ {a, b}, y ∈ {0, 1}, the
corresponding dynamics system has a unique equilibrium.
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Proof. Define notations Gsy := Gsy(θs(αa, αb)), ∆T s0 := T s01 − T s00 and ∆T s1 := T s11 − T s10.

hs(θs(αa, αb)) =
(1− T s10)Gs1 + (1− T s11)

(
1−Gs1

)
T s00Gs0 + T s01

(
1−Gs0

) =
(1− T s11) + ∆T s1Gs1
T s00 + ∆T s0

(
1−Gs0

)
Take derivative w.r.t. αu, ∀u ∈ {a, b},

∂hs(θs(αa, αb))

∂αu
=

∆T s1
∂Gs1
∂αu (T s00 + ∆T s0

(
1−Gs0

)
) + ∆T s0

∂Gs0
∂αu ((1− T s11) + ∆T s1Gs1)

(T s00 + ∆T s0
(
1−Gs0

)
)2

Consider case under Condition 1(A). Since ∆T s0 < 0, ∆T s1 < 0, T s00 + ∆T s0
(
1 − Gs0

)
> 0, and

(1− T s11) + ∆T s1Gs1 > 0 , we have |∂h
s(θs(αa,αb))
∂αu | ≤| ∆T s1M1T

s
00+∆T s0M0(1−T s11)

(T s01)2 |.

Take εs1 = εs0 =
(T s01)2

M1T s00+M0(1−T s11) , if |∆T s1 | < εs1 and |∆T s0 | < εs0, then |∂h
s(θs(αa,αb))
∂αu | < 1 holds.

From Theorem 2, the equilibrium of dynamics 4 is unique.

Consider case under Condition 1(B).

Since ∆T s0 > 0 and ∆T s1 > 0, we have |∂h
s(θs(αa,αb))
∂αu | ≤ ∆T s1M1T

s
01+∆T s0M0(1−T s10)

(T s00)2 .

Take εs1 = εs0 =
(T s00)2

M1T s01+M0(1−T s10) , if ∆T s1 < εs1 and ∆T s0 < εs0, then |∂h
s(θs(αa,αb))
∂αu | < 1 holds.

From Theorem 2, the equilibrium of dynamics 4 is unique.

The proof of Theorem 3.

Proof. ∀s ∈ {a, b}, an equilibrium α̂sUN satisfies:

1− g1s(θsUN(α̂
s
UN))

g0s(θsUN(α̂
s
UN))

=
1−

(
T s11(1−Gs1(θsUN(α̂

s
UN))) + T s10Gs1(θsUN(α̂

s
UN))
)

T s01(1−Gs0(θsUN(α̂
s
UN))) + T s00Gs0(θsUN(α̂

s
UN))

=
1

α̂sUN
− 1.

One solution to the above equation is:

α̂sUN = T s11(1−Gs1(θsUN(α̂
s
UN))) + T s10Gs1(θsUN(α̂

s
UN)) = T s01(1−Gs0(θsUN(α̂

s
UN))) + T s00Gs0(θsUN(α̂

s
UN))

It shows that α̂sUN is a convex combination of T s00, T s01, and also a convex combination of T s10, T s11.

∀αUN and Gs0(x), Gs1(x), there is a set of transitions with T s00 < αUN < T s01 and T s10 < αUN < T s11
(satisfy Condition 1(B)), or T s01 < αUN < T s00 and T s11 < αUN < T s10 (satisfy Condition 1(A)), such
that the above equation holds with α̂sUN = αUN, ∀s ∈ {a, b}, i.e., equitable equilibrium is attained.

Next we show that if Gay(x) 6= Gby(x), then α̂bC 6= α̂aC under these sets of transitions. Under
the conditions of Theorem 2, (α̂aC , α̂

b
C) is the intersection of two curves C1 = {(αa, αb) : αa =

ψaC(α
b), αb ∈ [0, 1]} and C2 = {(αa, αb) : αb = ψbC(α

a), αa ∈ [0, 1]}; furthermore, let α̃aC , α̃bC be
defined such that α̃aC = ψaC(α̃

a
C), α̃bC = ψbC(α̃

b
C), which are the intersections of αa = ψaC(α

b) and
αa = αb, as well as αb = ψbC(α

a) and αa = αb, respectively. Then in order to prove α̂bC 6= α̂aC , it is
sufficient to show α̃aC 6= α̃bC .

Given αa = αb = αUN, because Gay(x) 6= Gby(x), we have θsUN(αUN) 6= θsC(αUN, αUN) and to satisfy
Eqn. (3), there are only two possibilities: (1) θaUN(αUN) > θaC(αUN, αUN), θbUN(αUN) < θbC(αUN, αUN); (2)
θaUN(αUN) < θaC(αUN, αUN), θbUN(αUN) > θbC(αUN, αUN).

WLOG, suppose the first case holds. Under Condition 1(B),

1− g1b(θbUN(αUN))

g0b(θbUN(αUN))
<

1− g1b(θbC(αUN, αUN))

g0b(θbC(αUN, αUN))
;

1− g1a(θaUN(αUN))

g0a(θaUN(αUN))
>

1− g1a(θaC(αUN, αUN))

g0a(θaC(αUN, αUN))

It implies that α̃bC < α̂bUN = α̂aUN < α̃aC . Similarly, under Condition 1(A), α̃bC > α̂bUN = α̂aUN > α̃aC .
Therefore, α̂aC 6= α̂bC .

In contrast, if Gay(x) = Gby(x), we have θsUN(α) = θsC(α, α) and α̃bC = α̃aC . Therefore, α̂aC = α̂bC .
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The proof of Theorem 4.

Proof. WLOG, suppose that α̂aUN > α̂bUN in the proof. Let ψaC(·), ψbC(·) be balanced functions
as defined in Theorem 2 under constraint C. Firstly, we show that α̂bUN and α̂aUN are solutions to{
αb = ψbC(α

a)

αa = αb
and

{
αa = ψaC(α

b)

αa = αb
, respectively, i.e., α̂bUN = ψbC(α̂

b
UN) and α̂aUN = ψaC(α̂

a
UN).

Because Gay(x) = Gby(x), ∀y ∈ {0, 1},∀x, when αa = αb = α, we have γa(x) = γb(x),
PaEqOpt(x) = PbEqOpt(x) and PaDP(x) = PbDP(x), which implies θaC(α, α) = θbC(α, α); furthermore, the
optimal fair policies of DP and EqOpt satisfy γa(θaC(α, α)) = γb(θbC(α, α)) = u−

u++u−
according to

the optimal fair policy equation:

paα
a

γa(θaEqOpt)
+

pbα
b

γb(θbEqOpt)
=

paα
a

u−
u++u−

+
pbα

b

u−
u++u−

; paγ
a(θaDP) + pbγ

b(θbDP) =
u−

u+ + u−
.

Because γa(θaUN(α)) = γb(θbUN(α)) = u−
u++u−

we have γa(θaUN(α)) = γa(θaC(α, α)) = γb(θbUN(α)) =

γb(θbC(α, α)) so that θaC(α, α) = θaUN(α) = θbC(α, α) = θbUN(α) holds under any α. ∀s ∈ {a, b},
because α̂sUN is the solution to balanced equation, i.e., ls(α̂sUN) = hs(θsUN(α̂

s
UN)). We have ls(α̂sUN) =

hs(θsC(α̂
s
UN, α̂

s
UN)), which further implies α̂sUN = ψsC(α̂

s
UN).

Under Condition 1(B), according to the proof of Theorem 2, we know that 0 ≤ dψbC(αa)
dαa < 1 and

0 ≤ dψaC(αb)
dαb

< 1. Because α̂bUN = ψbC(α̂
b
UN) < α̂aUN = ψaC(α̂

a
UN), we have α̂bUN < ψbC(α

a) < αa,
∀αa ∈ [α̂bUN, α̂

a
UN]. Similarly, we have αb < ψaC(α

b) < α̂aUN, ∀αb ∈ [α̂bUN, α̂
a
UN]. Therefore, after

representing the two balanced functions as two curves C1 = {(αa, αb) : αa = ψaC(α
b), αb ∈ [0, 1]}

and C2 = {(αa, αb) : αb = ψbC(α
a), αa ∈ [0, 1]} on the 2D plane {(αa, αb) : αa ∈ [0, 1], αb ∈

[0, 1]}, the intersection (α̂aC , α̂
b
C) of C1 and C2 satisfies: 1) α̂aC > α̂bC; 2) α̂bUN < α̂aC < α̂aUN; 3)

α̂bUN < α̂bC < α̂aUN. Therefore, |α̂aC − α̂bC | ≤ |α̂aUN − α̂bUN|.

Under Condition 1(A), according to the proof of Theorem 2, we know that −1 <
dψbC(αa)
dαa ≤ 0

and −1 <
dψaC(αb)
dαb

≤ 0. Because α̂bUN = ψbC(α̂
b
UN) < α̂aUN = ψaC(α̂

a
UN), we have ψbC(α

a) < α̂bUN,
∀αa > α̂bUN. Similarly, we have ψaC(α

b) > α̂aUN, ∀αb < α̂aUN. Due to the existence of equilibrium, the
intersection (α̂aC , α̂

b
C) of C1 and C2 must satisfy: 1) α̂aC > α̂bC ; 2) α̂aUN < α̂aC ; 3) α̂bC < α̂bUN. Therefore,

|α̂aC − α̂bC | ≥ |α̂aUN − α̂bUN|.

The proof of Theorem 5.

Proof. The proof is under the conditions of Theorem 2 such that there is unique equilibrium of
qualification rate. Under fairness constraint C = EqOpt or DP, consider 2D plane {(αa, αb) :
αa ∈ [0, 1], αb ∈ [0, 1]}, and note that equilibrium (α̂aC , α̂

b
C) is the intersection of two curves

C1 = {(αa, αb) : αa = ψaC(α
b), αb ∈ [0, 1]} and C2 = {(αa, αb) : αb = ψbC(α

a), αa ∈ [0, 1]}.
Consider a line {(αa, αb) : αa = αb, αa ∈ [0, 1], αb ∈ [0, 1]}, which has unique intersection α̃aC
with C1, and unique intersection α̃bC with C2. That is, α̃aC = ψaC(α̃

a
C), α̃bC = ψbC(α̃

b
C).

First of all, we show that if u+

u−
≥ 1−T10

T00
β(x̂), under Condition 1(B), α̂bUN < α̂aUN.

By Condition 2, given any αa = αb = α, the corresponding qualification profiles of Ga, Gb satisfy the
followings: γb(x̂) = γa(x̂); γb(x) < γa(x),∀x < x̂; γb(x) > γa(x),∀x > x̂. Let α be qualification

rate such that γa(x̂) = γb(x̂) = u−
u++u−

=⇒u+

u−
= β(x̂)( 1

α − 1), where β(x̂) :=
Ga0 (x̂)
Ga1 (x̂) =

Gb0(x̂)

Gb1(x̂)
,

then ∀α ∈ [α, 1], γa(θaUN(α)) = γb(θbUN(α)) = u−
u++u−

< 1
β(x̂)( 1

α−1)+1
= γa(x̂) = γb(x̂). Thus,

∀α ∈ [α, 1], θaUN(α) < θbUN(α) < x̂, which implies Ga1(θaUN(α)) < Gb1(θbUN(α)) and Ga0(θaUN(α)) <
Gb0(θbUN(α)); furthermore, under Condition 1(B), we have

1− T11

T01
<

1− g1a(θaUN(α))

g0a(θaUN(α))
<

1− g1b(θbUN(α))

g0b(θbUN(α))
<

1− T10

T00
, ∀α ∈ [α, 1].
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Because α̂aUN and α̂bUN are solutions to balance equations, i.e., 1
α̂aUN
− 1 =

1−g1a(θaUN(α̂
a
UN))

g0a(θaUN(α̂
a
UN))

, 1
α̂bUN
− 1 =

1−g1b(θbUN(α̂
b
UN))

g0b(θbUN(α̂
b
UN))

. If α ≤ α̂bUN, the α̂bUN < α̂aUN must hold under Condition 1(B). Next, we show that a

sufficient condition of α ≤ α̂bUN is u+

u−
≥ 1−T10

T00
β(x̂).

u+

u−
≥ 1−T10

T00
β(x̂) =⇒ 1

α − 1 ≥ 1−T10

T00
. Since 1

α̂bUN
− 1 < 1−T10

T00
, we have 1

α̂bUN
− 1 < 1

α − 1. Thus,

α ≤ α̂bUN. Therefore, if u+

u−
≥ 1−T10

T00
β(x̂), under Condition 1(B), α̂bUN < α̂aUN.

Fairness constraint EqOpt. Secondly, we show that for EqOpt fair policy, if u+

u−
≥ 1−T10

T00
β(x̂),

under Condition 1(B), α̂aUN − α̂bUN > α̂aEqOpt − α̂bEqOpt ≥ 0. Because two curves C1, C2 are monotonic
increasing. It’s sufficient to show two parts: (1) α̃aEqOpt < α̂aUN, α̃bEqOpt > α̂bUN; (2) α̃aEqOpt ≥ α̃bEqOpt.

Under EqOpt constraint, ∀αa, αb, Ga1(θaEqOpt(α
a, αb)) = Gb1(θbEqOpt(α

a, αb)) must hold so that
θaEqOpt(α

a, αb) = θbEqOpt(α
a, αb). Consider the case αa = αb = α, ∀α ≥ α, we have θaEqOpt(α, α) =

θbEqOpt(α, α) and θaUN(α) < θbUN(α). It implies that θaUN(α) < θaEqOpt(α, α) = θbEqOpt(α, α) < θbUN(α) <

x̂, otherwise Equation (3) will be violated. Therefore, the followings hold ∀α ∈ [α, 1],

1− g1a(θaEqOpt(α, α))

g0a(θaEqOpt(α, α))
>

1− g1a(θaUN(α))

g0a(θaUN(α))
;

1− g1b(θbEqOpt(α, α))

g0b(θbEqOpt(α, α))
<

1− g1b(θbUN(α))

g0b(θbUN(α))
.

∀s ∈ {a, b}, α̃sEqOpt is the solution to
1−g1s(θsEqOpt(α,α))

g0s(θsEqOpt(α,α)) = 1
α − 1 while α̂sUN is the solution to

1−g1s(θsUN(α))
g0s(θsUN(α)) = 1

α − 1. Since α ≤ α̂bUN < α̂aUN, it implies α̃aEqOpt < α̂aUN, α̃bEqOpt > α̂bUN.

Next, show that α̃aEqOpt ≥ α̃bEqOpt. ∀α ≥ α, θaEqOpt(α, α) = θbEqOpt(α, α) implies Ga1(θaEqOpt(α, α)) =

Gb1(θbEqOpt(α, α)) and Ga0(θaEqOpt(α, α)) ≤ Gb0(θbEqOpt(α, α)). Therefore,

1− g1a(θaEqOpt(α, α))

g0a(θaEqOpt(α, α))
≤

1− g1b(θbEqOpt(α, α))

g0b(θbEqOpt(α, α))
.

Intersections with function 1
α − 1 satisfies α̃aEqOpt ≥ α̃bEqOpt.

It thus concludes that α̂aUN − α̂bUN > α̂aEqOpt − α̂bEqOpt ≥ 0.

Fairness constraint DP. Finally, consider DP fair policy, where ∀αa, αb, (1−αa)Ga0(θaDP(α
a, αb))+

αaGa1(θaDP(α
a, αb)) = (1− αb)Gb0(θbDP(α

a, αb)) + αbGb1(θbDP(α
a, αb)) must hold.

We first show that under Condition 1(B), α̃aDP < α̂aUN, α̃bDP > α̂bUN. Consider the case αa = αb = α,
∀α ≥ α. Since ∀x, (1− α)Gb0(x) + αGb1(x) ≥ (1− α)Ga0(x) + αGa1(x), (1− α)Ga0(θaDP(α, α)) +
αGa1(θaDP(α, α)) = (1−α)Gb0(θbDP(α, α))+αGb1(θbDP(α, α)) implies θaDP(α, α) ≥ θbDP(α, α). Because
θaUN(α) < θbUN(α), ∀α ≥ α. It implies that θaDP(α, α) > θaUN(α) and x̂ > θbUN(α) > θbDP(α, α) must
hold. Therefore, ∀α ∈ [α, 1],

1− g1a(θaDP(α, α))

g0a(θaDP(α, α))
>

1− g1a(θaUN(α))

g0a(θaUN(α))
;

1− g1b(θbDP(α, α))

g0b(θbDP(α, α))
<

1− g1b(θbUN(α))

g0b(θbUN(α))

Similar to reasoning in EqOpt case, we have α̃aDP < α̂aUN, α̃bDP > α̂bUN.

Different from EqOpt fairness where α̃aEqOpt ≥ α̃bEqOpt, both α̃aDP ≥ α̃bDP and α̃aDP ≤ α̃bDP are likely
to occur, depending on distributions Ga0(x), Gb0(x), Ga1(x) and Gb1(x). It is because θaDP(α, α) >
θbDP(α, α) can result in either Ga0(θaDP(α, α)) ≤ Gb0(θbDP(α, α)) or Ga0(θaDP(α, α)) ≥ Gb0(θbDP(α, α)).

For these two outcomes, if α̃aDP ≥ α̃bDP, then DP fair policy results in a more equitable equilibrium
than unconstrained policy; if α̃aDP ≤ α̃bDP, it means the disadvantaged group is flipped from Gb to Ga.

The proof of Proposition 1.
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Proof. In the proof, we simplify the notations by removing subscript C.

Let ψs(·), ψs
′
(·) be balanced function of policies (θa, θb) and (θa

′
, θb
′
), respectively.

According to the balanced equation (5),

1

αs
− 1 =

1− g1s(θs(αa, αb))

g0s(θs(αa, αb))
=

1− (T s11(1−Gs1(θs(αa, αb))) + T s10Gs1(θs(αa, αb)))

T s01(1−Gs0(θs(αa, αb))) + T s00Gs0(θs(αa, αb))
.

Under Condition (B), ∀αa, αb ∈ [0, 1], θa
′
(αa, αb) < θa(αa, αb) and θb

′
(αa, αb) < θb(αa, αb).

Under Condition (A), ∀αa, αb ∈ [0, 1], θa
′
(αa, αb) > θa(αa, αb) and θb

′
(αa, αb) > θb(αa, αb).

Both imply that 1−g1s(θs(αa,αb))
g0s(θs(αa,αb))

> 1−g1s(θs
′
(αa,αb))

g0s(θs′ (αa,αb))
, and ∀αa, αb ∈ [0, 1], ψa(αb) < ψa

′
(αb) and

ψb(αa) < ψb
′
(αa) hold. As a consequence, α̂a

′
> α̂a and α̂b

′
> α̂b.

Now consider the long-run average utility of institute U(θa, θb) = limT→∞
1
T

∑T
t=1 Ut(θa, θb),

where the instantaneous utility at t under threshold policies θa, θb is

Ut(θa, θb) =
∑
s=a,b

psEXt|S=s[1(Xt ≥ θs)(γst (Xt)(u+ + u−)− u−)]

=
∑
s=a,b

ps

∫ ∞
θs

(γst (x)(u+ + u−)− u−)P(Xt = x | S = s)dx

=
∑
s=a,b

ps

∫ ∞
θs

αst
(
Gs1(x)u+ +Gs0(x)u−

)
−Gs0(x)u−dx

In the followings, we use a special case (C = EqOpt, Gay(x) = Gby(x),∀x, y = 0, 1, under Condition
1(B)) to show that U(θa

′
, θb
′
) > U(θa, θb) can be attained, i.e., the long-run average utility under

policy (θa
′
, θb
′
) can be higher than myopic optimal policy (θa, θb).

Since the qualification rates of two groups converge to equilibrium, U(θa, θb) = U∞(θa, θb) is the
same as instantaneous expected utility of institute at the equilibrium state. To show that U(θa

′
, θb
′
) >

U(θa, θb), we prove the following holds,∑
s=a,b

ps

∫ ∞
θs′ (α̂a′ ,α̂b′ )

f(x; α̂s
′
)dx >

∑
s=a,b

ps

∫ ∞
θs(α̂a,α̂b)

f(x; α̂s)dx (7)

where f(x; α̂s) := α̂s
(
Gs1(x)u+ +Gs0(x)u−

)
−Gs0(x)u−.

Because α̂s
′
> α̂s, θs

′
(α̂a

′
, α̂b

′
) < θs(α̂a

′
, α̂b

′
) < θs(α̂a, α̂b) holds under Condition (B). LHS of

above inequality can be written as∑
s=a,b

ps

(∫ θs(α̂a,α̂b)

θs′ (α̂a′ ,α̂b′ )

f(x; α̂s
′
)dx+

∫ ∞
θs(α̂a,α̂b)

f(x; α̂s
′
)dx
)
.

Inequality (7) can further be re-organized,∑
s=a,b

ps

∫ θs(α̂a,α̂b)

θs′ (α̂a′ ,α̂b′ )

f(x; α̂s
′
)dx >

∑
s=a,b

ps

∫ ∞
θs(α̂a,α̂b)

(
f(x; α̂s)− f(x; α̂s

′
)
)
dx (8)

Consider a special case where C = EqOpt and Gay(x) = Gby(x) = Gy(x),∀x, ∀y ∈ {0, 1}. Then
∀αa, αb, we have θa(αa, αb) = θb(αa, αb) and θa

′
(αa, αb) = θb

′
(αa, αb). Inequality (8) can be

reduced to the following, ∀s ∈ {a, b}, simplify notations and let θ̂ := θs(α̂a, α̂b), θ̂′ := θs
′
(α̂a

′
, α̂b

′
).(

paα̂
a′ + pbα̂

b′
)(

G1(θ̂)−G1(θ̂′)
)
u+

+
(
u+(1−G1(θ̂)) + u−(1−G0(θ̂))

)(
pa(α̂a

′
− α̂a) + pb(α̂

b′ − α̂b)
)

︸ ︷︷ ︸
term 1

>
(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)(

G0(θ̂)−G0(θ̂′)
)
u− (9)
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Because 1
α̂s′
− 1 = 1−g1s(θ̂′)

g0s(θ̂′)
and 1

α̂s − 1 = 1−g1s(θ̂)
g0s(θ̂)

.

α̂s
′
− α̂s > T s01 − T s00

1− T s10 + T s01

(G0(θ̂)−G0(θ̂′))

We have term 1 >(u+

u−
(1−G1(θ̂)) + (1−G0(θ̂))

)(
pa

T a01 − T a00

1− T a10 + T a01

+ pb
T b01 − T b00

1− T b10 + T b01

)
︸ ︷︷ ︸

:=h(θ̂)>0

(
G0(θ̂)−G0(θ̂′)

)
u−

For the optimal EqOpt fair threshold θ(α̂a
′
, α̂b

′
), the following holds(

paα̂
a′ + pbα̂

b′
)
G1(θ(α̂a

′
, α̂b

′
))u+ =

(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)
G0(θ(α̂a

′
, α̂b

′
))u−(

paα̂
a′ + pbα̂

b′
)
G1(x)u+ >

(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)
G0(x)u−,∀x > θ(α̂a

′
, α̂b

′
)(

paα̂
a′ + pbα̂

b′
)
G1(x)u+ <

(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)
G0(x)u−,∀x < θ(α̂a

′
, α̂b

′
)

It implies that ∃ some δ > 0 s.t. ∀x ∈ (θ(α̂a
′
, α̂b

′
)− δ, θ(α̂a′ , α̂b′) + δ) := B(θ(α̂a

′
, α̂b

′
), δ),(

paα̂
a′ + pbα̂

b′
)
G1(x)u+ + h(θ̂)G0(x)u− >

(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)
G0(x)u−.

θ̂, θ̂′ ∈ B(θ(α̂a
′
, α̂b

′
), δ) can be satisfied as long as |θs(αa, αb) − θs′(αa, αb)| ≤ ε for some suffi-

ciently small ε > 0.

Using the mean value theorem, ∃Gy(x) and x̃ ∈ (θ̂′, θ̂) ⊂ B(θ(α̂a
′
, α̂b

′
), δ) s.t.(

paα̂
a′ + pbα̂

b′
)

(G1(θ̂)−G1(θ̂′))u+ + h(θ̂)(G0(θ̂)−G0(θ̂′))u−

=
((
paα̂

a′ + pbα̂
b′
)
G1(x̃)u+ + h(θ̂)G0(x̃)u−

)
(θ̂ − θ̂′)

>
((
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)
G0(x̃)u−

)
(θ̂ − θ̂′)

≥
(
pa(1− α̂a

′
) + pb(1− α̂b

′
)
)

(G0(θ̂)−G0(θ̂′))u−.

Therefore, inequality (9) holds and U(θa
′
, θb
′
) > U(θa, θb).

The proof of Proposition 2.

Proof. To ensure αst → α̂, threshold policy θs(αs) as a function of αs ∈ [0, 1] should
be designed such that 1−g1s(θs(αs))

g0s(θs(αs)) = 1
αs − 1 has a unique solution α̂. Let Is :=[ 1−max{T s11,T

s
10}

max{T s01,T s00}
,

1−min{T s11,T
s
10}

min{T s01,T s00}
]
, then 1−g1s(θs(αs))

g0s(θs(αs)) ∈ Is for any threshold policy θs(αs).

If Ia ∩ Ib = ∅, then 1−g1a(θa(α))
g0a(θa(α)) = 1−g1b(θb(α))

g0b(θb(α))
can never be attained, i.e., no threshold policy can

result in equitable equilibrium.

If Ia ∩ Ib 6= ∅, then ∀α̂ ∈ Ia ∩ Ib and ∀s ∈ {a, b}, there exists threshold policy θs(αs) such that
1−g1s(θs(α̂))
g0s(θs(α̂)) = 1

α̂ − 1. Specifically, under Condition 1(B) (resp. 1(A)), function

hs(x) :=
1− g1s(x)

g0s(x)
=

1− (T s11(1−Gs1(x)) + T s10Gs1(x))

T s01(1−Gs0(x)) + T s00Gs0(x)

is strictly increasing (resp. decreasing) in x ∈ (−∞,+∞) from 1−T s11
T s01

(resp. 1−T s10
T s00

) to 1−T s10
T s00

(resp.
1−T s11
T s01

) and any non-increasing function θs(αs) that satisfies θs(α̂) = (hs)−1( 1
α̂ − 1) can result in

αst → α̂, where (hs)−1(·) is the inverse function of hs(·).
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The proof of Proposition 3.

Proof. According to the balanced equation (5),

1

αs
− 1 =

1− g1s(θs(αa, αb))

g0s(θs(αa, αb))
=

1− (T s11(1−Gs1(θs(αa, αb))) + T s10Gs1(θs(αa, αb)))

T s01(1−Gs0(θs(αa, αb))) + T s00Gs0(θs(αa, αb))
.

∀αa, αb ∈ [0, 1], increasing any T syd decreases 1−g1s(θs(αa,αb))
g0s(θs(αa,αb))

. Let ψs
′
(·) be the consequent

balanced function after increasing T syd, and α̂s
′

be corresponding equilibrium. Given any αa, αb ∈
[0, 1], we have ψa(αb) < ψa

′
(αb) and ψb(αa) < ψb

′
(αa). Therefore, α̂a

′
> α̂a and α̂b

′
> α̂b.
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