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Abstract

Most supervised learning problems assume that the data available for training is
well-representative of the data on which the model will be deployed. Distribution
shift is a fairly robust subfield within machine learning more broadly, but there
has been little work that integrates findings from the distribution shift literature to
fair machine learning, despite an increasing interest in and awareness of long-term
dynamics created by fair machine learning systems. In settings where fairness
is a concern, there are additional reasons for training data to be unrepresentative
of the true data: the available data may have been generated through a process
reflecting discrimination, such as the systematic mislabeling of positive examples
from a specific group. In this work, we build upon work in both fairness and
distribution shift to examine the performance of fair machine learning models
when the reliability of labels is uncertain and dynamic, focusing on label bias as
the bias model, and label shift as the mechanism of distribution shift. First, we
present a framework for approaching and understanding distribution shift problems
in the context of fairness. Then, motivated by real-world needs, we consider two
scenarios for distribution shift: (i) no access to new labeled data, only new model
inputs; and (ii) access to new (potentially-biased) labels. Our experimental results
suggest that the combination of distribution shift and label shift may be a plausible
failure mode for fair algorithms, indicating the relationship between distribution
shift and learned fair models is an important area of continued study.

1 Introduction

When decisions with consequences for the trajectory of human lives are made or recommended
algorithmically, it is imperative that stakeholders—decisionmakers, regulators, and those about whom
decisions are being made—can be confident about the performance of the algorithm. Though the
necessity of socially responsible machine learning systems has been obvious for several years, only
recently has fair machine learning scholarship begun to explore many of the fundamental assumptions
of the field. While a plethora of definitions, algorithms, and metrics for what constitutes “fair”
machine learning have been developed (see, for example survey paper [[10]), those approaches tend to
focus on the algorithm in isolation, addressing statistics calculated only on the input and output of
the individual algorithm at a single timestep. Recent work in fair machine learning, however, has
emphasized the importance of (re)considering the algorithm in its broader context. A key component
of contextualizing these algorithms is building confidence in the robustness of algorithm performance.
An algorithm used responsibly cannot solely be fair (however fairness may be defined) at time of
development—it must also be trusted to consistently and reliably perform well.

In this work, we consider the performance of a deployed “fair" algorithm under conditions of
distribution shift. While long-term dynamics of fair decisionmaking systems have recently garnered
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substantial interest [[18}, 5], the simpler case of a single shift between training and deployment has
received surprisingly little attention.

One of the most common—and well-studied—reasons for real-world data to diverge from the training
data is distribution shift, where P(X )iain 7# P(X)est> O P(Y)irain 7 P (Y )iest- In contexts where
fairness is relevant, however, there is a second major reason for potential unrepresentativeness of
training data: the reliability of the available data itself, where features, labels, or sampling for
particular subgroups can be systematically incorrect [7) 28, [3]]. In this work, we focus on label
shift as the mechanism of distribution shift—that is, P(Y )yain # P (Y )wes—and label bias as the
model for bias—that is, the available labels for particular subpopulations are systematically incorrect.
Distribution shift is a critical issue in the context of fairness-relevant domains, and the combination
of label shift with label bias arises naturally: machine learning for the purposes of disease diagnosis,
for example, is a common case study for distribution shift problems, and one can imagine that the
generation of the training labels for such models can be skewed by systematic misdiagnosis for
certain population subgroups (for example, women and people of color [21]]).

In this work, we first propose a framework for approaching and understanding problems where the
unreliability of data may be twofold—due to systemically biased data (label bias) and to potential
changes in distribution (label shift). Then, we provide results for a series of experiments motivated by
real-world needs, asking to what extent are existing algorithms robust to label bias and label shift?
While in most settings, existing fair approaches are surprisingly robust to both label bias and label
shift, a handful of failure modes highlight the importance of careful construction of models for bias.

2 Related work

Distribution shift is a well-known problem space in machine learning. [20] provide a canonical
taxonomy of the main types of shift, including covariate (a change in P(X)), label (a change in
P(Y)), concept (a change in P(Y'|X) or P(X]Y)), and “other”; they also provide explanations for
causes of shift, such as systemic under-sampling. Of primary interest in our work is label shift, where
P(Y) changes and P(X|Y) stays the same. Specifically, label shift occurs in y — « problems—for
example, disease diagnosis or image classification. Recent strategies for detection and mitigation of
label shift without requiring retraining of the entire classifier are proposed by [12], who require that
the probability mass function of y in the test setting is known, and [17]]’s Black Box Shift Estimation
(BBSE), which requires only the predicted outputs at test time. [23]] provide an empirical evaluation
of several methods for detecting dataset shift, though their work is not exclusive to label bias.

In fair machine learning, one well-developed line of work involves the idea that (available) data does
not reflect “ground truth”; generally, unrepresentativeness is contextualized as one of the reasons
available data and algorithms trained on such data is unfair. [3]] identify several distinct reasons that
data collected can be unrepresentative, including label bias, where labels for subsets of the population
are incorrect; feature bias, where feature values for subsets of the population are incorrect; and sample
bias, where some subsets of the population are systematically under- or over- sampled. Our work
draws from the approach of [14], who find that fairness-adjusted classifiers that may appear fair on
the available data can actually be unfair on the true data, due to the systematic censoring of training
data; they successfully apply methods typically used in covariate shift to improve the calculation
of fairness metrics. Other work that develops the idea of available vs true datasets, including many
preprocessing approaches to achieving fairness, includes [7], 6], [8]], and [28].

We focus on label bias as the mechanism by which bias is introduced to the data. In the binary
classification case, this can be modeled by the systematic flipping of labels belonging to particu-
lar population subgroups; for example, positive examples from the disadvantaged group may be
mislabeled as negative, or negative examples from the advantaged group may be mislabeled as
positive. Recent work has emphasized that the often-cited “fairness-accuracy"” tradeoft [[19} 29/ [10]
may disappear once accuracy is measured against some hidden true dataset rather than the original
available data: [2] find that the lowest-risk equal-opportunity-constrained classifier on the available
biased data is also the lowest-risk classifier on the true data. [9] place bounds on the relationship
between the observed and true value of metrics calculated with possibly incorrect labels. [13]] first
rewrite common notions of fairness as constraint functions, then use those constraints to define the
relationship between true and available labels. They find, with theoretical and empirical results,
that a simple reweighing approach to training on the biased labels approximates training on the true



labels. Similarly, [27]] contribute a semi supervised learning method, where outcomes on unlabeled
data are used as a regularizer on the weights learned from the labeled data. Of note for all of these
results relating label bias to the fairness-accuracy tradeoff is an assumption on the true underlying
data—namely, that any observed discrepancy in base rates P(label|group) is due to label bias, and
that the true underlying base rates are equal across groups.

Work applying ideas from distribution shift to fairness settings is relatively new, and to date has
mostly focused on covariate shift and/or domain adaptation and transfer learning, where the goal is to
re-purpose a pre-trained fair classifier for an entirely new task or for an entirely different protected
attribute rather than to ensure the continued performance of the pre-trained classifier on the same
task [1250 24} 4]]. [26] introduce fairness warnings, which are designed for domain adaptation—the
warnings identify which changes to the features of the data might cause the “fair" algorithm to fail
on the new setting. The warnings are generated by a meta-model which learns what shifts may
cause fairness to fail. The spirit of our work is similar, in that we hope to provide insight towards
auditing and understanding the fairness performance of a pre-trained classifier, but (i) we focus on
a change in the label distribution rather than in the means of the features, and (ii) we are primarily
concerned about distribution shifts where the classifier continues to be used for the same task, rather
than repurposed for a separate domain.

3 Problem setting

In this work, we focus on label bias, though the general framework proposed in this section can be
adapted for other scenarios where some underlying “true” data distribution is transformed to the
“biased” dataset available for training. Our first contribution is a general conceptual framework for
understanding distribution shift in a fairness context.

3.1 General framework

The modelling of bias in a dataset and the modelling of distribution shift from train time to test time
share several concepts. For example, one cause for shift cited in [20] is systematic undersampling
based on a feature value or a label value; this is also a common explanation for why a dataset reflects
bias against a particular group.

However, we are not only concerned with similarities in the way distribution shift and “unfair datasets”
may be structured. Rather, we are concerned about shifts in the true data distribution, in addition
to the relationship between the true data and the available data. For clarity, let { = 0 represent
the time of training, and ¢ = 1 represent some new timestep. To return to our motivating example
of disease diagnosis from the introduction, label shift only would imply that the prevalence of a
particular disease is different at ¢ = 1 than at t = 0. Label bias only, on the other hand, suggests that
at any given time, for women that should have a positive diagnosis, some percentage of them are
misdiagnosed as negative. Our model investigates the setting where both of the above occur.

3.2 Unified model of label bias

First, we unify several related models for label bias. While all of the work cited in Section 2
involve systematic mislabellings of particular population subgroups, the specific way label bias is
modelled varies. Our model, which encompasses most previously-proposed models for label bias,
is as follows. The true underlying distribution D is defined by (X, S, Z), where X is the vector
of permissible attributes; S is the sensitive attribute(s); and Z is the hidden frue label. Let S = A
indicate membership in the privileged class, S = B indicate membership in the disadvantaged
class and Z = 1 indicate the desirable outcome. Furthermore, assuming binary classification, let
Ca=P(Z=1|S=A)and (g = P(Z = 1|S = B). Note that a key assumption in most current
label bias work is that (4 = (.

Though selection bias is generally likely or plausible, for simplicity we assume that the dataset we
have available does not undersample or oversample any group based on the true labels. Rather,
bias is introduced into the dataset through the labels only: that is, the bias-generating process is the
process of generating biased labels. Let Y = G(X, S, Z) represent this process, where Y is the label
available in the dataset, and the function G represents how the biased labels were generated.



The simplest version of G involves flipping the labels of certain subsets of D depending only on S
and Z. We can define

1 —Z with probability p4 if S =A,Z =0
Y =G(X,5,Z) =1 1—Z with probability pp if S =B, Z =1
Z otherwise.

In other words, negative examples from the privileged class are flipped with probability p4, and
positive examples from the disadvantaged class are flipped with probability pp. In [2]], p4 = 0, as
flipping only occurs for positive examples from Group B; in [9], pp = 0, as flipping only occurs for
negative examples from Group A; in [27], p4 = pp # 0.

3.3 Modeling dataset shift

We assume that we have access to some classifier F, which has been trained to be fair with respect to
the true labels (i.e. Z) att = 0. There are several parameters that may change from¢ =0to ¢ = 1:
Ca,CB,pa, and pp. We propose two scenarios of interest, motivated by real-world auditing needs.

Scenario 1: no access to new labels. That is, we have no access to new labels at ¢ = 1, so the nature
of the bias model at ¢ = 1 is unknown, but the #rue distribution of labels Z (i.e. D) has changed.
Practically, this means that (4 and/or (p has changed. (Recall that since we are only considering
label shift, we assume P(B);—g = P(B):=1. If P(B) had changed, that would be a special case of
covariate shift.) In this scenario, we are primarily interested in the impact of label bias in the training
data on classifier performance, specifically under label shift in the test data.

Scenario 2: access to new (biased) labels. Suppose new data is collected for the purposes of
validating the model’s continued performance at ¢ = 1; this new collected data has labels Y;—;. Here,
we have two possible mechanisms for how shift may have occured.

1. True distribution changes. Like in scenario 1, D;—; # D;—¢; (4 and/or {p have changed.

2. Bias model changes. We now have labels Y;—;. It may be the case that while the true
distribution of labels has remained the same, label shift appears to have occurred because G
has changed; practically, this means that p4 and/or pp may have changed. Changes in p
technically fall under concept shift (a change in the relationship between X and Y'), and are
beyond the scope of typical distribution shift work. However, we still consider changes in p
in this work, as we believe that this is a simple, plausible, and relevant occurrence, and as
there are few systematic approaches to resolving concept shift.

In this case, new information from the potentially-biased labels Y;—; raises the additional question
of how reliable performance metrics calculated at £ = 1 may be, in particular, whether it might be
possible that F appears fair on Y;—1, but in reality is no longer fair on the true labels Z;—;.

4 Experiments

Datasets We currently consider only a single, binary sensitive attributeE] We run experiments on
both synthetic data and a modified version of the 1994 Adult Census data. Recall that (¢ represents
P(Z = 1|S = G), where G is group A or B and where Z is the true label. For each dataset type
(synthetic or Adult), we generate versions with several possible (s; a core assumption in most label
bias papers is that (4 = (p, so we train models only on the datasets where (4 = (. Then, for each
version of the dataset, we further generate a series of “label-biased” Y -values.

To test the simplest instantiation of our model, we generate a synthetic dataset where P(S = B) = 0.3,
and each example has exactly two attributes: a sensitive attribute a, and a real-valued score xO where
the score x0 is drawn from A/ (5, 1) for positively-classified examples (i.e. Z = 1) and from A/ (2, 1)

'[13] have a much more complex notion of which labels are likely to flip, corresponding to a particular
measure of fairness; however, their model suggests that the specific fairness metric determines the nature of
label bias, which we find unintuitive.

>We are aware of the limitations associated with this choice, and hope this work is a starting point for
analyzing distribution shift under more complex (and realistic) versions of label bias.



for negatively-classified examples (Z = 0). We create datasets with ¢ € [0.2,0.3,0.4], and for
each of those datasets add label-biased versions for p4 = pp € [0.05,0.1,0.15,0.2,0.25] as well
as pa = 0,pp € [0.05,0.1,0.15,0.2,0.25]. Since p represents the probability that labels will be
flipped, these sets of parameters test two different models: one where both negative examples from A
and positive examples from B are flipped, and one where only positive examples from B are flipped.

For the Adult Census dataset, we use race as the sensitive attribute, dropping sex from training.
We start with the IBM Fairness 360 preprocessing; for reference, this version of the dataset has
P(S = B) = 0.14, P(Y = 1|B) = 0.158, P(Y = 1]A) = 0.262 [1]. To construct datasets
with our desired (s, we drop examples from the dataset until our desired statistic is reached. For
this dataset, we create datasets with ¢ € [0.1,0.15,0.2,0.25], and add label-biased versions with
pa =0,pp €[0.05,0.1,0.15,0.2,0.25,0.3,0.35, 0.4].

Algorithms For both dataset types, we run the following algorithms using their implementations in
the IBM Fairness 360 package.

e Baseline—Logistic Regression. For both datasets, Logistic Regression reaches around 80%
accuracy. Logistic Regression is also the base classifier for the following methods.

e Preprocessing—Disparate Impact Remover []|], which edits feature values in order to
achieve minimal disparate impact; and Reweighing [15], which weights examples in each
(group, label) combination.

e Postprocessing—FEqual Opportunity [[L1]], which probabilistically flips predicted labels in
order to achieve equalized odds; Calibrated Equal Opportunity [22], which is similar in
method to [[L1]] but optimizes instead over calibrated classifier outputs; and Reject Option
Classification [16]], which flips predicted labels for unprivileged groups originally given
unfavorable classifications and privileged groups originally given favorable classifications.

For all of these algorithms, after training the classifier, we also search for the Logistic Regression
threshold that gives maximizes balanced accuracy (across positive and negative classes).

Metrics  For each experiment, we calculate the average odds difference (3 ((FPRp — FPR4) +
(TPRp — TPR,))), balanced accuracy, equal-opportunity difference (I'PRg — TPR4), and

statistical-parity difference (P(Y = 1|B) — P(Y = 1]A)).

5 Results & discussion

General sensitivity Interestingly, under the simple perturbations we apply to each of the datasets,
these algorithms appear to be fairly robust to both true label shift (as discussed in scenario 1),
and to testing on newly biased data (as discussed in scenario 2) in general. For the vast majority
combinations of algorithm and metric, the pre-trained algorithm performs well for all combinations of
possible training dataset versions and testing dataset versions; this is the case for both datasets. There
are a few notable exceptions, which appear to be algorithm-dependent; however, even so, observed
differences in metrics either depend solely on the bias model in the fraining data, or solely on the bias
model in the festing data. In other words, there does not appear to be complex relationships between
potentially-different levels of label bias in the training and testing datasets, even under label shift.

The impact of label bias in fraining In scenario 1 from our problem setting (section 3.3), we
asked whether fair classifiers able to recover a hypothesis which reflects the true data distribution,
even if they have been trained on the biased data, and furthermore, whether this hypothesis is robust
to shifts in the true test data. While this is generally the case, results from the Calibrated Equalized
Odds algorithm suggest that the specific type of bias model can have significant impacts on the learned
hypothesis, and furthermore that these hypotheses are nevertheless robust to subsequent changes in
the testing data. In Figure [2] note that the heatmaps for the two metrics—average odds difference and
equal opportunity difference—are roughly split into two sections, one reflecting algorithms trained
on data with a bias model of p4 = 0, and one reflecting a bias model of p4 = pp. Furthermore,
within these two regions, the extent of label bias (i.e. value of p) has a relatively insignificant impact.
Rather, it is the choice in defining the label bias model—whether negative examples from group A
are also flipped, rather than just positive examples from group B—that can have a drastic impact on
the learned hypothesis.
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Figure 1: Calibrated Equalized Odds postprocessing algorithm, synthetic data. Vertical axis: training
data, along with the specific way in which it was label biased. Horizontal axis: test data. In this
plot, reflects all combinations of dataset versions noted above, including several different (s and p
combinations.
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Figure 2: Reweigh preprocessing algorithm, synthetic data. Horizontal axis reflects datasets with
constant (s and various versions of label bias. While the selected results are for (4 = (5 = 0.3, the
exact same pattern appears for (4 = (g = 0.2 and (4 = (5 = 0.4.

The impact of label bias in testing In scenario 2 from our problem setting, we hoped to char-
acterize the impact of evaluating pre-trained algorithms on potentially label-biased datasets. As
above, label bias in testing data, even when also label-shifted, generally does not result in erroneous
evaluations. However, with the Reweighing algorithm, there are some versions of label bias where,
no matter what version of label bias was present in training, an algorithm tested on these versions
may appear to no longer be fair even when it is actually fair with regards to the true labels. Most
notably, it is exactly the versions of label bias that also impacted the Calibrated Equalized Odds
algorithm at train time: specifically, where p4 = pp.

The importance of understanding the bias model and algorithm These results are at once
reassuring—as most algorithms and metrics are more robust than one might have expected—and
yet at the same time, raise additional questions about the way in which the dataset is modeled.
The phenomena discussed above are not universal behavior across all algorithms, emphasizing the
importance of fully understanding why and how an algorithm might be “correcting” for fairness.
Furthermore, given that all of the recent work on “label bias™ have slightly different (though still
related) models for bias, one might expect that any of those assumptions would be sufficient to
capture the general behavior expected under label bias. Our results suggest that this is not necessarily
the case, and additionally that the ad-hoc choice of one model over another can have significant
impacts on algorithm performance. Finally, “label bias” is already a highly simplified and stylized
interpretation of how bias can be captured in a dataset; further work involving such models must
explore the implications of different parameter settings for the bias model.



Broader Impact

This work is intended as an exploration of the performance of fair classifiers when distribution shift
has occurred. We hope this paper raises new, relevant questions in the field of fair machine learning
that are not currently addressed in the literature: we believe that understanding and validating the
continued performance of “fair” classifiers is an urgent and important problem. However, in our work,
the modelling stage involves the introduction of strong assumptions about the data, especially what
defines “bias” for the specific dataset. No dataset can fully capture the nuances of the real world,
and no “model for bias” can fully capture the nuances of any dataset. There are inevitably limits to
the way that “bias” has been conceptualized here; we do not intend for this work to contribute to a
narrative that a “perfectly unbiased” dataset may exist in the real world. While our goal has been to
provide context and intuition for the limits of fair algorithms, we also hope this does not provide a
false sense of confidence in particular combinations of algorithm/metric/shift.
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