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Abstract
In algorithmic decision making, recourse refers to individuals’ ability to systemati-
cally reverse an unfavorable decision made by an algorithm by altering actionable
input variables. Meanwhile, individuals subjected to a classification mechanism are
incentivized to behave strategically in order to gain a system’s approval. However,
not all strategic behavior necessarily leads to adverse results: through appropri-
ate mechanism design, strategic behavior can induce genuine improvement in an
individual’s qualifications. In this paper, we explore how to design a classifier
that achieves high accuracy while providing recourse to strategic individuals so
as to incentivize them to improve their features in non-manipulative ways. We
capture these dynamics using a two-stage game, and show under this model, we
can provide analytical results characterizing the equilibrium strategies for both the
mechanism designer and the agents. Our results provide insights for designing a
machine learning model that focuses not only on the static distribution as of now,
but also tries to encourage future improvement.

1 Introduction

In the context of algorithmic decision making, recourse refers to the ability of individuals to system-
atically reverse unfavorable decisions made by algorithms [1, 2]. For example, when an individual is
rejected by the bank for a credit card application, the bank should provide practical suggestions to
the individual on how to alter their profile to increase their chance of being approved in the future.
When carefully implemented, recourse realizes important ethical decision-making principles and
fosters greater trust in algorithmic systems [2]. At the same time, individuals who are subject to a
classifier’s decisions are strategic: when they have incentives to be classified in a certain way, they
may behave strategically to influence their outcomes. Such behaviors, often referred to as strategic
manipulation [3], may also lead to disparate effects between different social groups [4], or impose
unnecessary social burdens on individuals [5]. Nonetheless, not all strategic behavior necessarily
leads to adverse consequences. In many applications, we can leverage strategic behavior to incentivize
agents to improve their qualifications [6, 7]. When taken together, the above phenomena suggest
a challenging and important mechanism design problem in which the mechanism designer tries to
deploy a classifier that is able to 1) classify accurately on the current data distribution and 2) provide
meaningful recourse where agents are encouraged to to flip a negative decision, but only through
improving their true qualification (improvable features). In this work, we address the following
question:

Given that individuals will behave strategically, how can we design a classifier that achieves high
prediction accuracy while providing individuals recourse by incentivizing improvements?

Like [8], we model the above learning and mechanism design problem as a two-stage, two-player
game. The first player is the mechanism designer, who is given a set of labeled examples from some
true label function h and is required to publish a classifier f . The second player is the individual
or agent, who holds a feature x to be revealed to the classifier and is given a chance to “game” it,
meaning that the agent may change their x to obtain a favorable outcome from the classifier f . At the
same time, the agent incurs a cost for these changes according to a cost function that is known to
both players.
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In our setting, we distinguish between improvable features , manipulated features , and unactionable
features .This provides us with a formal way to differentiate between honest improvement and pure
manipulation. Our cost function model also departs from previous works in strategic classification,
where the cost is modeled either as a separable function [8] or the L2 norm [6]. These cost functions
generally do not explicitly capture correlations between changes in the features. For this reason,
we choose to model the cost using the Mahalanobis distance [9], which precisely captures such
interactions between features. Our empirical results demonstates the effectiveness of our algorithms
in terms of incentivizing agents’ improving behaviors as well as achieving a high prediction accuracy.

Related work Our work is related to research on strategic classification [8, 10, 11, 12, 13, 14, 15],
recourse [1, 2, 16, 17, 18, 19, 20, 21, 22, 23], causal modeling of features [24, 25, 26, 27, 7], as well
as algorithmic fairness in machine learning [28, 29, 30, 31, 32, 33].

2 Problem Statement

Our setting involves two players. The first player is a mechanism designer, who publishes a binary
classifier with the goal of both accurately classifying agents based on their revealed features, as well
as incentivizing agents to improve certain features. The second player is a set of agents, each of
whom is characterized by a feature vector, but may attempt to change their features to so as to obtain
a favorable classification outcome. Formally, we have the following game:
Definition 2.1. [Strategic Recourse Game] The players are the mechanism designer and the agents.
The agents are sampled from a population distribution D over a d-dimensional feature space X ⊆ Rd.
Each agent holds a feature vector or profile x. Let c : X × X → R+ be a cost function (known to all
players) and let h : X → {−1,+1} be the true label function that maps x to its true label h(x). In
formulating our games, we assume the designer has perfect knowledge of h. In practice, h remains
unknown but the mechanism designer has access to a set of samples {xn, h(xn)}Nn=1 drawn from the
agent population to approximate her payoff. The two players take the following actions:

1. First, the mechanism designer publishes a classifier f : X → {−1,+1} with the hope of
incentivizing the agents to improve their profiles and achieve a high prediction accuracy.

2. Next, each agent reveals a feature vector x′ with the hope of being classified as +1. If
an agent’s original feature vector is x ∈ X but chooses to reveal x′ ∈ X , she pays a cost
c(x, x′).

The rest of this section is devoted to developing the details of the payoff functions for both players.

2.1 Key Assumptions

On top of the general setting described above, we make three key assumptions to instantiate our
discussions:
Linear Threshold Classifier: we assume that the classifier f published by the mechanism designer
is a linear threshold function of the form f(x) = sign

(
wT

f x− bf
)

where wf ∈ Rd and bf ∈ R are
weights, and sign(z) equals −1 if z < 0 and +1 otherwise.

Features Taxonomy: we assume that the feature vector x is a concatenation of three disjoint feature
sets xI , xM , and xU , namely x = [xI ◦ xM ◦ xU ] = [xA ◦ xU ]. Improvable features (xI ) are
those that the mechanism designer should encourage individuals to change (e.g. education level).
Manipulated features (xM ) can be changed but shouldn’t be encouraged (e.g. strategically change
the loan purpose). Unactionable features (xU ) are those that cannot be changed (e.g. age, race).
Additionally, let the actionable features xA be the concatenation of the improvable and manipulated
features, i.e. xA = xI ◦ xM . We use dA to denote the dimension of xA. let there be an analogous
partition of the weights into wf = wI ◦ wM ◦ wU and wA = wI ◦ wM .

Cost Function: as in previous works on strategic classification [8, 6], we assume that agents incur
a cost for modifying their features. We choose to model this cost using the Mahalanobis norm of
the feature changes, namely c(x, x′) =

√
(xA − x′A)TS−1(xA − x′A) . Note that since unactionable

features xU cannot be changed as part of the agent’s move, the cost function only accounts for the
actionable features xA. We call S−1 ∈ RdA × RdA the cost covariance matrix, in which each entry
S−1ij indicates the correlation between the cost of modifying xi and the cost of modifying xj . In
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order for c(·, ·) to be a valid norm, S−1 is required to be positive definite (PD), i.e. S−1 satisfies
xTAS

−1xA > 0 for all xA ∈ RdA . We also assume that S−1 is symmetric. We further assume that S
is a diagonal block matrix of the following form, which says that there are no substantial correlations
between improvable and manipulated variables:

S−1 =

[
S−1
I 0
0 S−1

M

]
and S =

[
SI 0
0 SM

]
. (1)

2.2 Players’ Payoffs

Next we motivate and define the payoff functions of the two players in details.

2.2.1 The Agent’s Payoff

Given a classifier f , an agent who starts out with features x and changes them to x′ derives total
utility

Uf (x, x′) = f(x′)− c(x, x′)
The default option for an agent is to change nothing about x, which results in a utility of f(x) (since
c(x, x) ≡ 0). Agents will therefore only change to some x′ 6= x if Uf (x, x′) ≥ f(x). This motivates
the following best response model for the agent:
Lemma 1 (Best-Response Agent Model). Given a classifier f : X → {−1,+1}, a cost function
c : X × X → R, and an actionable feature set X † ⊆ X containing the feasible feature vectors to
which x can move, an agent with features x has a best response to the classifier given by the following
optimization problem:

max
x′∈X†

Uf (x, x′) s.t. c(x, x′) ≤ 2

We provide the proof of Lemma 1 in Appendix A.1.

We will find it useful to distinguish between two types of best response: an unconstrained best
response ∆(x) in which the agent can change both improvable and manipulated features, and an
improving best response ∆I(x) in which only improvable features can be changed. Later we will
examine what the mechanism designer should do if their goal is to incentivize improving actions from
the agents. This motivates a definition of the improving best response wherein agents best respond by
changing only the improvable features.
Definition 2.2 (Unconstrained Best Response). Let ∆ : X → X denote the unconstrained best
response of an individual with feature x to f , defined as:

∆(x) =

{
arg maxx′∈X∗

A
(x) Uf (x, x′), if Uf (x, x′) ≥ 0

x, otherwise

where X ∗A(x) denotes the set of feature vectors that differ from x only in the actionable features XA.
Definition 2.3 (Improving Best Response). Let ∆I : X → X denote the improving best response of
the agent with feature x to f , defined as:

∆I(x) =

{
arg maxx′∈X∗

I
(x) Uf (x, x′), if Uf (x, x′) ≥ 0

x, otherwise

where X ∗I (x) denotes the set of feature vectors that differ from x only in the improvable features XI .

2.2.2 The Mechanism Designer’s Payoff

The goal of the mechanism designer is to publish a classifier f that maximizes the classification
accuracy while incentivizing individuals to change their improvable features. Mathematically, we
formulate the optimization problem for the mechanism designer as follows:

max
wf ,bf

Pr
x∼D

[f(∆(x)) = h(x)] + λ Pr
x∼D

[f(∆I(x)) = +1]

s.t.∆(x) =

arg max
x′∈X∗

A
(x)

Uf (x, x′), if Uf (x, x′) ≥ 0

x, otherwise
, ∆I(x) =

arg max
x′∈X∗

I
(x)

Uf (x, x′), if Uf (x, x′) ≥ 0

x, otherwise
(2)
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The first term Prx∼D[f(∆(x) = h(x))] is the prediction accuracy when accounting for agents’
strategic behavior. Meanwhile, the mechanism designer also hopes to incentivize actual improvement
from the agents and grant meaningful recourse by maximizing their chance of being assigned +1
when they choose an improving best response; this is what the second term of the objective function,
Prx∼D[f(∆I(x) = +1)], tries to capture. The coefficient λ between the two terms captures the
trade-off between providing more recourse and ensuring the prediction accuracy of the algorithm.
Notice that when λ = 0, we obtain the standard strategic classification setting [8], in which the
objective function for the mechanism designer is simply to maximize prediction accuracy considering
agents’ strategic behavior.

3 Agents’ Best-response

In this section, we derive the agents’ best response equilibrium under the key assumptions that we
mention in Section 2.1. we prove the following theorem characterizing the agent’s unconstrained best
response ∆(x) as well as the improving best response ∆I(x):
Theorem 1. An agent with feature x who was classified as −1 by a linear threshold function
f = sign(wT

f x− bf ) has unconstrained best response ∆(x) of the form:

∆(x) =


x, if

|wT
f x−bf |√
wT

A
SwA

≥ 2[
xA −

wT
f x−bf

wT
A
SwA

SwA

]
◦ xU , otherwise

(3)

with corresponding cost

c(x,∆(x)) =


|wT

f x−bf |√
wT

A
SwA

, if
|wT

f x−bf |√
wT

A
SwA

≥ 2

0 otherwise

The same agent has improving best response

∆I(x) =


x, if

|wT
f x−bf |√
wT

I
SIwI

≥ 2[
xI −

wf ·x−bf

wT
I
SIwI

SIwI

]
◦ xM ◦ xU , otherwise

with corresponding cost

c(x,∆I(x)) =


|wT

f x−bf |√
wT

I
SIwI

, if
|wT

f x−bf |√
wT

I
SIwI

≥ 2

0 otherwise

We provide the proof of Theorem 1 in Appendix A.3.

A practical consideration to bring up here is that in many real-life scenarios, there are constraints
on which directions some features can change towards. For example, if there is a feature called
“has_phd”, it can only be changed from 0 to 1. It turns out that adding such directionality constraints
to the agent’s best response model would make it impossible to draw a closed-form solution Instead,
we incorporate such logic into the game model by adding the feature directionality constraint to the
objective function of the mechanism designer. We discuss this approach in more details in Section 4.

4 Optimal Strategic Recourse Model

After obtaining the closed form solution of both the unconstrained and improving best response from
the agents, we can further derive the objective function for the mechanism designer, and the model to
deploy at equilibrium. Recall that the objective function for the mechanism designer is:

max
wf ,bf

Pr
x∼D

[f(∆(x)) = h(x)] + λ Pr
x∼D

[f(∆I(x)) = +1]

After some mathematical transformations and remove the constants (see Appendix A.2), the objective
function becomes:

max
wf ,bf

Ex∼D

[(
2 · 1[wf · x− bf ≥ −2

√
wT

ASwA]− 1

)
· h(x) + λ · 1[wf · x− bf ≥ −2

√
wT

I SIwI ]

]
(4)
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Recall that here λ is a hyperparameter that captures the trade-off between prediction accuracy and
incentivized improvement in the improvable features.In the empirical session, we will discuss in
more details about how changes in different λ lead to difference performances. Our empirical results
show that we are able to optimize Eq. (4) from samples.

4.1 Partially Actionable Features

In practice, individuals often can only modify some features towards a particular direction, and
modeling the restriction on agents’ side makes the problem analytically hard. Instead, we “prohibited"
such moves in the mechanism designer’s objective function. The idea is that if the mechanism designer
is punished for encouraging an illegal action, the announced classifier will not incentivize such moves
from agents. Therefore from agent’s perspective, this introduces the moving constraints implicitly. In
particular, we construct an array dir ∈ {−1, 0,+1}d to represent the prohibited moving direction of
the feature vectors. Here, if feature xi should not go bigger, then the i-th component of vector dir
should be +1; if feature xj should not go smaller, then the j-th component of vector dir should be
−1; if there is no constraints on the moving direction of a feature xk, then dirk = 0. Then we add a
penalty in terms of a ramp function after the objective Eq. (2):

−η ·
d∑

i=1

max(diri · (∆(x)− x)i, 0) (5)

where η is a positive constant to count the overall weight of this penalty term. Eq. (5) will penalize
the weights of partially actionable features so that agents would prefer to move towards a certain
direction. We provide more evaluation details in Section 5.2.

5 Empirical Evaluation

In this section, we present evidence for how our solution can help increase the improving recourse
fraction and generate meaningful flipsets.

Dataset We conduct numeric simulation on Credit dataset [34], which contains 10,000 positive and
10,000 negative individuals. The goal of this dataset is to predict whether the individual will default
on his upcoming credit payments. For each individual, there are 16 features. We show the split of
improvable features (I), manipulated features (M), and unactionable features (U) in Table 2.

Cost Matrix For simplicity, we ignore the correlation among features. Let I denote the identity
matrix. Considering the fact that making improvements usually cost more than manipulation, we set
S−1I = I and S−1M = 1

5I respectively.

Evaluation Metrics We evaluate the performance of our algorithm using two metrics: (1) Predic-
tion Accuracy Pr[f(∆(x)) = h(x)], and (2) Recourse fraction Pr[f(∆I(x)) = +1 | h(x) = −1],
which represents the proportion of population who are denied by h but get approved by classifier f
through improvement.

Classifiers We mainly focus on the performance of two classifiers:

• Baseline classifier only considers maximizing the accuracy, and optimize the objective function
subject to λ = 0 in Eq. (2).

• Recourse classifier considers both maximizing the accuracy and incentivizing the proportion of
recourse population, and optimize the objective function subject to λ = 1 in Eq. (2).

5.1 Results

Model Selection: we perform model selection and present the performance across different λ values
in Fig. 1. We can observe a general trade-off trend between accuracy and recourse fraction after
λ > 1. Our aim is not to show an exact relationship between the performance of linear classifiers
and parameter λ, but to suggest mechanism designers or practitioners how to deploy a model that
carefully incentivizes honest improvements.
Flipset: We also construct the flipsets for individuals in Credit dataset using the closed-form solution
Eq. (3) under the trained strategic recourse classifier. Flipset is a set of actionable changes for an
individual to flip the prediction of the classifier. As shown in Table 2, when we don’t consider
the moving direction of features (η = 0), the user who is predicted to have default next month
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Figure 1: Accuracy vs recourse
fraction across different λ values.
Red dashed lines represent accuracy,
while blue solid lines represent re-
course fraction.

Baseline Recourse

Penalty η Accuracy Fraction Accuracy Fraction

0 50.75% 1.87% 68.10% 48.25%
1 57.42% 11.10% 68.19% 32.83%
10 55.23% 7.23% 66.77% 55.56%
100 70.2% 39.77% 70.1% 39.91%
1000 70.2% 39.77% 70.21% 39.77%

Table 1: Empirical result on Credit dataset.

Feature Type dir Original η = 0 η = 100

EducationLevel I +1 3 2 ↓ 3
TotalOverdueCounts I 0 1 1 1
TotalMonthsOverdue I 0 1 1 0 ↓
MaxBillAmountOverLast6Months M 0 0 0 0
MaxPaymentAmountOverLast6Months M 0 0 0 0
MonthsWithZeroBalanceOverLast6Months M 0 0 0 0
MonthsWithLowSpendingOverLast6Months M 0 6 5 ↓ 6
MonthsWithHighSpendingOverLast6Months M 0 0 0 0
MostRecentBillAmount M 0 0 0 0
MostRecentPaymentAmount M 0 0 0 0

NoDefaultNextMonth - - −1 +1 ↑ +1 ↑

Table 2: Flipsets for Credit dataset with partially actionable features.

(NoDefaultNextMonth = −1) is supposed to decrease his education level and decrease his Month-
sWithLowSpendingOverLast6Months in order to flip his outcome of the recourse classifier with
respect to the cost matrix.

5.2 Partially Actionable Features

We compare the performance of classifiers with partially actionable features on Credit dataset. Recall
in this case the objective function we use for the mechanism designer is given by adding a penalty
term −η ·

∑d
i=1 max(diri · (∆(x)− x)i, 0) to Eq. (2). We show the specific dir array we used in this

experiment in Table 2 where education level is prohibited from decreasing. As shown in Table 1, the
direction penalty dominates the objective function when η ≥ 100. In this case, increasing λ will not
provide agents more recourse. We highlight the best performance the recourse classifier achieves
when η = 10. We also note that for baseline classifier, large η improves both of its accuracy and
recourse fraction. This fact provides the insight that direction penalty based on human experience
might help the classifiers fit more to the real data.

We also build the flipsets of recourse classifier for an individual with h(x) = −1 when the penalty
η = 0 and η = 100 respectively. As shown in Table 2, the individual will undesirably reduce his
education level when the classifier is unaware of the partially actionable features. On the other hand,
the individual would decrease his total overdue months instead when the direction penalty is imposed
during training.

6 Concluding Remarks

In this work, we study the problem of strategic recourse. Given that agents are strategic, the goal of the
mechanism designer is to simultaneously achieve high prediction accuracy and provide those agents a
recourse that ultimately incentivizes them to improve their profile instead of superficially manipulation.
We characterize the best response actions for both the agents and the mechanism designer, and provide
useful insights for their behavior through theoretical analysis. Empirical evaluations are also provided
to demonstrate that our strategic recourse classifier succeeds in achieving a better trade-off between
preserving accuracy and providing as many agents an improving recourse as possible.
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A Omitted Proofs and Derivations

We present the missing proofs from the paper.

A.1 Proof of Lemma 1

Proof. Since the classifier in our game outputs a binary decision (−1 or +1), agents only have an
incentive to change their features from x to x′ when c(x, x′) ≤ 2. To see this, notice that an agent
originally classified as −1 receives a default utility of U(x, x) = f(x)− 0 = −1 by presenting her
original features x. Since costs are always non-negative, she can only hope to increase her utility by
flipping the classifier’s decision. If she changes her features to some x′ such that f(x′) = +1, then
the new utility will be given by

Uf (x, x′) = f(x′)− c(x, x′) = 1− c(x, x′)
Hence the agent will only change her features if 1− c(x, x′) ≥ f(x) = −1, or c(x, x′) ≤ 2.

A.2 Derivations of the objective function for the mechanism designer

In this section, we provide a detailed derivations of the objective funtion for the mechism designer in
Section 4. Noting that the closed form of f(∆(x)) is given as follows:

f(∆(x)) =

{
+1 if wf · x− bf ≥ −2

√
wT

ASwA

−1 otherwise

which further derives as:

f(∆(x)) = 2 · 1[wf · x− b ≥ −2
√
wT

f Swf ]− 1,

where 1[·] is the indicator function which equal to 1 if the specified condition is satisfied, and 0
otherwise. Similarly, the closed form for f(∆I(x)) is given by:

f(∆I(x)) = 2 · 1[w · x− b ≥ −2
√
wT

I SIwI ]− 1

The objective function for the mechanism designer can then be re-written as follows:

Pr
x∼D

[f(∆(x)) = h(x)] + λ Pr
x∼D

[f(∆I(x)) = +1]

=Ex∼D [1[f(∆(x)) = h(x)] + λ1[f(∆(x)) = +1]]

=Ex∼D

[
1

2
(1 + λ) +

1

2
f(∆(x)) · h(x) +

λ

2
f(∆I(x))

]
Removing the constants, the objective function becomes:

max
wf ,bf

Ex∼D [λ+ f(∆(x)) · h(x) + λf(∆I(x))]

max
wf ,bf

Ex∼D

[(
2 · 1[wf · x− bf ≥ −2

√
wT

ASwA]− 1

)
· h(x) + λ · 1[wf · x− bf ≥ −2

√
wT

I SIwI ]

]

A.3 Omit Proofs of Theorem 1

In this section, we provide the proofs of Theorem 1 in Section 3.

We first provide a lemma that allows us to re-formulate the optimization problem in Lemma 1:
Lemma 2. Let x? be an optimal solution to the following optimization problem:

x? = arg min
x′∈X∗A(x)

c(x, x′)

s.t. sign(wT
f x
′ − bf ) = 1

9



If no solution returned, we say a x? such that c(x, x?) =∞ is returned. Define ∆(x) as follows:

∆(x) =

{
x?, if c(x, x?) ≤ 2

x, otherwise

Then ∆(x) is an optimal solution to the optimization problem in Lemma 1.

Proof. Recall the utility function of the agent is Uf (x, x′) = f(x′)− c(x, x′). And recall that the
agent will only modify their features unless the utility increases, aka if c(x, x′) ≤ 2 where they
achieve f(x′) = 1 and the corresponding cost is bounded by 2 (the maximum possible cost of
achieving a higher utility after modifying the features).

Consider two cases for x′ 6= x:

1. when x′ that satisfies c(x, x′) > 2: in this case, there are no feasible points for the optimiza-
tion problem of Lemma 1.

2. when x′ that satisfies c(x, x′) ≤ 2, we only need to consider those features x′ that satisfies
f(x′) = 1, because if f(x′) = −1, the agent with feature x would prefer not to change
anything. Since maximizing Uf (x, x′) = f(x′)− c(x, x′) is equivalent of to minimizing
c(x, x′) if f(x′) = 1, and we know that when c(x, x′) ≤ 2, the solution of Lemma 1 is
equivalent of the optimal solution of Lemma 2.

Lemma 2 provides us with an alternative way of looking at the agent’s best response model: the
goal of the agent is to minimize the cost of changing features such that she can cross the decision
boundary of the classifier. This lemma enables us to re-formulate the objective function as follows.

Recall that c(x, x′) =
√

(xA − x′A)TS−1(xA − x′A) where S is a covariance matrix satisfying
Eq. (1). Since S−1 is a symmetric positive definite matrix, it can be diagonalized into the following
form, in which Q is an orthogonal matrix and Λ−1 is a diagonal matrix:

S−1 = QT Λ−1Q = (Λ−
1
2Q)T (Λ−

1
2Q)

With this, we can re-write the cost function as

c(x, x′) =
√

(xA − x′A)TS−1(xA − x′A) = ‖Λ− 1
2Q(xA − x′A)‖2

Meanwhile, the constraint in Lemma 2 rewrites as

sign(wf · x′ − bf ) = sign(wA · x′A + wU · xU − bf ) = sign(wA · x′A − (bf − wU · xU )) = 1

Hence the optimization problem can be reformulated into:

min
x′A∈X∗A

‖(Λ− 1
2Q(xA − x′A))‖2 (6)

s.t. sign(wA · x′A − (bf − wU · xU )) = 1 (7)

The above optimization problem can be further simplified:

Lemma 3. If x∓A is an optimal solution to Eq. (6) under constraint Eq. (7), then it must satisfy
wA · x∓A − (bf − wU · xU ) = 0.

Proof. We prove by contradiction. Suppose that x∓A is an optimal solution to Eq. (6) and it satisfies
wAx

∓
A > bf − wU · xU . Since the original feature x was classified as −1, we have:

wA · x∓A > bf − wU · xU , wA · xA < bf − wU · xU

By the continuity properties of linear vector space, there exists a µ ∈ (0, 1) such that:

wA

(
µ · x∓A + (1− µ)xA

)
= bf − wU · xU
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Let x′′A = µ · x∓A + (1 − µ)xA, we know that sign(wAx
′′
A − (bf − wU · xU )) = 1, i.e., x′′A also

satisfies the constraint. Since x∓A is the optimal solution of Eq. (6), we have

‖Σ− 1
2Q(x∓A − xA)‖ ≤ ‖Σ− 1

2Q(x′′A − xA)‖

However, we also have:

‖Σ− 1
2Q(x′′A − xA)‖ = ‖Σ− 1

2Q(µ · x∓A + (1− µ)xA − xA)‖

= ‖Σ− 1
2Q(µ · (x∓A − xA))‖

= µ‖Σ− 1
2Q(x∓A − xA)‖

< ‖Σ− 1
2Q(x∓A − xA)‖

which is contradicting to our assumption that x∓A is optimal. Therefore x∓A needs to satisfy wAx
∓
A =

bf − wU · xU .

As a result of Lemma 3, we can replace the constraint in Eq. (6) with its corresponding equality
constraint, and it won’t change the optimal solution. Therefore the agent’s best response optimization
problem in Lemma 1 is equivalent to:

min
x′A

‖(Λ− 1
2Q(xA − x′A))‖2 (8)

s.t. wA · x′A − (bf − wU · xU ) = 0 (9)

The above optimization problem satisfied a standard norm minimization with equality constraints [35]
which is known to have a close-form solution. Similar arguments follow for ∆I(x) and the rest of
details can be found in the Appendix.

The following lemma gives us a closed-form solution for the above optimization problem:
Lemma 4. The optimal solution to the optimization problem defined in Eq. (8) and Eq. (9), has the
following closed-form

x∓A = xA −
wT

f x− bf
wT

ASwA
SwA.

Proof. Notice that we can re-organize the above optimization problem defined in Eq. (8) and Eq. (9)
as the following form:

min
x′A∈X∗A

‖Ax′A − b‖2

s.t. Cx′A = d

where A = Λ−
1
2Q, b = Λ−

1
2QxA, C = wT

A, and d = bf − wT
UxU . We note the following useful

equalities:

ATA = (Λ−
1
2Q)T Λ−

1
2Q = S−1

(ATA)−1 = S

AT b = (Λ−
1
2Q)T Λ−

1
2QxA = S−1xA

The above is a norm minimization problem with equality constraints, whose optimum x∓A has the
following closed form [35]:

x∓A = (ATA)−1
(
AT b− CT (C(ATA)−1CT )−1(C(ATA)−1AT b− d)

)
= S

(
S−1xA − wA(wT

ASwA)−1(wT
AS(S−1xA)− bf + wU · xU )

)
= xA − S

(
wA(wT

ASwA)−1(wT
AxA + wT

UxU − bf )
)

= xA −
wT

f x− bf
wT

ASwA
SwA
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We can now compute the cost incurred by an individual with features x who plays their best response
x∓:

c(x, x∓) =
√

(xA − x∓A)TS−1(xA − x∓A)

=

√√√√(wT
f x− bf
wT

ASwA
SwA

)T

S−1

(
wT

f x− bf
wT

ASwA
SwA

)

=
|wT

f x− bf |√
wT

ASwA

Hence an agent who was classified as −1 with feature vector x has the unconstrained best response

∆(x) =


x, if

|wT
f x−bf |√
wT

ASwA

≥ 2[
xA −

wT
f x−bf

wT
ASwA

SwA

]
◦ xU , otherwise

Similarly, finding ∆I(x) for any x is equivalent to solving the following optimization problem:

min
x′∈X∗I (x)

c(x, x′)

s.t. sign(wT
f x
′ − bf ) = 1

If we let x′ = x′I ◦ xM ◦ xU , then this can be re-written as

min
x′I∈X∗I

√
(xI − x′I)TS−1I (xI − x′I)

s.t. wI · x′I = bf − wM · xM − wU · xU
By the same argument as before, we have the closed-form solution

x′I = xI −
wf · x− bf
wT

I SIwI
S−1I wI

whose cost is

c(x, x′) =
√

(xI − x′I)TS−1I (xI − x′I) =
|wT

f x− bf |√
wT

I SIwI

This yields the improving best response

∆I(x) =

x, if
|wT

f x−bf |√
wT

I SIwI

≥ 2[
xI − wf ·x−bf

wT
I SIwI

SIwI

]
◦ xM ◦ xU , otherwise

Then we finish the proof of Theorem 1.
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