
Rankings for Two-Sided Market Platforms

Yi Su
Cornell University

Ithaca, NY
ys756@cornell.edu

Thorsten Joachims
Cornell University

Ithaca, NY
tj@cs.cornell.edu

Abstract

Rankings have become the standard interface for presenting results to customers
in online systems. Traditional online systems connect customers with items (e.g.
books, music, news), where only the customers have preference that the system
needs to model. This has led to a broad array of learning-to-rank algorithms for
optimizing customer’s preference. However, new applications of ranking in multi-
sided market platforms (e.g., job search, online dating, college admission), where
both sides (e.g. job candidates and employers) explore the market through rankings,
are gaining in importance. We find that in such ranking-based matching markets,
the scarcity on the supplier side and competition among customers make the naive
preference-based rankings highly sub-optimal. To address this problem, we explore
methods for globally and simultaneously optimizing all rankings in a two-sided
market platform, and we propose an optimization-based framework for maximizing
social welfare in the market. Under a specific examination model, our objective
can be solved effectively using any off-the-shelf convex optimization algorithms.
Further, we discuss potential trade-offs between stability and the overall social
welfare, and incorporate various constraints to achieve this balance.

1 Introduction

Most online systems (e.g., search engine, recommender system, music streaming) rely on rankings as
the prevalent way of presenting results to the customers. A fundamental principle guiding the design
of ranking algorithms is called the Probability Ranking Principle (PRP) [12], which argues that the
ideal ranking should rank the items based on their relevance to the customer, since this will provide
maximum utility to the customers under virtually any reasonable utility measure. However, rankings
are increasingly used in new and emerging multi-sided market platforms [1, 9, 10, 17] (e.g., job
search, online dating, property renting). In these markets, the online system works as an intermediary
facilitating the interaction between the two-sides of the market: suppliers and customers. Different
from traditional systems, in which an item could be consumed an (almost) unlimited amount of times
by different customers, the items to be ranked in the two-sided markets are jobs, people, houses,
which are scarce by nature. Furthermore, both sides of the market have preferences, the customers
have preferences over the suppliers, but the suppliers also have preferences over the customers. This
results in the fact that the utility to a customer on either side of the market is not determined by their
own preference assessment, but also depends on the preferences of potentially every other customer
in the market.

In these market platforms, ranking solely based on individual customer preference will give subopti-
mal results, for both an individual customer as well as for the effectiveness of the platform overall. For
example, in the online networking recommendation systems for virtual conferences, a famous/senior
researcher who works broadly on multiple topics might be of high preference to many attendees.
Hence, a naive preference-based system will rank this person at the top to a large amount of people -
overloading this individual. Consequently, many attendees will get no any reply from this person,
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leading to low networking engagement and hence low satisfaction with the system. To alleviate this
problem, globally optimized rankings could serve an important role in reducing collision between
customer choices, for example, by presenting ranking that balance the load and maximize the number
of successful matches. This calls for new frameworks for efficiently design ranking algorithms in
these two-sided market platforms.

In this work, we study the setting in which the interaction of customers and suppliers are happening in
a sequential manner. When a customer enters the market, the online system presents specific rankings
to this customer. Based on this specific ranking, the customer initiates the matches with different
suppliers probabilistically according to a behavioral model that depends on where the supplier appears
in the ranking. This reflects the position bias that rankings induce on the probability that a rank
position will be observed. From the supplier side, after receiving the initiated matches from the
customers, the supplier responds back to the customers based on the preference of these customers in
his perspective. This two-stage interaction is highly relevant to various practical applications, like
job search, renting platforms, and online markets, ant they are also used in the assortment planning
literature [1, 16]. Under this setting, each individual’s utility is characterized by the expected matches
he will get, and this not only depends on the two-sided preferences between him and suppliers, but
also highly depends on how others act in the market. Motivated by this, we work with the objective
of maximizing the expected number of matches in the markets as a form of social welfare function.

Our main contribution is as follows. We formulate the problem of ranking in these two-sided markets.
Followed by this, we propose a tractable lower bound of the social-welfare objective. We show that,
for certain examination models, this objective can be effectively solved iteratively based on any off-
the-shelf convex optimization solvers. To further discuss the trade-off between overall social welfare
and individual utilities, we show our framework can incorporate constraints related to the fairness
of the globally optimized rankings without hurting the computational complexity. This need for
fairness was pointed out in multiple recent works [15, 18, 2, 19] that discuss the social responsibility
that the ranking systems should have. This includes fairness to all participants, interpretability, and
transparent in the guarantees it provides. Our work also has implications on the societal role of
these online systems, as these platforms are likely to take important roles in mediating consequential
processes that affect not only the individual, but also the effectiveness of the market as a whole.

2 Problem Formulation

For simplicity of exposition, we discuss the two-sided platform in the specific setting of a job
application platform. However, many other settings fit into the same schema. We denote the set of
candidates in the markets as C, and the set of employers as J . In these markets, we use r(c, j) to
denote the candidate c’s preference for employer j and r(j, c) to denote the employer j’s preference
for candidate c, we assume all the preferences in [0, 1] and known. By using different notations for
the two-side preference, we also incorporate the scenario when the preference is asymmetric in the
two-sided markets.

The interaction in the market goes as follows: for each candidate c ∈ C, the system presents a ranking
r(c) of all |J | employers to the candidate. The candidate then browses the ranking, assuming a
position-based model [11, 7] to account for presentation bias. This means the probability of applying
to a specific employer j (i.e., initiate the matching) depends on the preference r(c, j), as well as the
examination probability P(e(j) = 1|rank(j|r(c))). In the position-based model, the examination
probability is a function of the position of employer j in the presented ranking and it models how
much attention employer j gets at rank rank(j|r(c)). Typically v is an application-dependent
function; popular choices include v(x) = 1/x and v(x) = 1

log(1+x) , which is used in the Discounted
Cumulative Gain (DCG) [6] measure. Therefore we have that

P(c initiates matching to j) := Pc,j = r(c, j)

( ∑
r(c)∈Rc

P(r(c)|c)v(rank(j|r(c)))
)
. (1)

Here we use Rc to denote the set of all possible rankings over |J | employers for candidate c, and
P(·|c) is our stochastic ranking policy, which is a probability distribution maps from Rc → ∆ with
∆ denotes the probability simplex over all the possible rankings over |J | employers. However,
the number of possible rankings is exponential in nature. In order to avoid any computation over
this large combinatorial space, we utilize the fact that the term

∑
r(c)∈Rc P(r(c)|c)v(rank(j|r(c)))
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captures the marginal rank distributions of employer j under stochastic ranking policy P(·|c). It can
therefore be rewritten as

Pc,j = r(c, j)

( |J |∑
k=1

PM (rank(j) = k|c)v(k)

)
= r(c, j)eTj P

cv,

where PM : {1, 2, · · · , |J |} → ∆|J | captures the marginal probability of placing employer j at
rank k, under stochastic policy P. This reduces the representation of the stochastic ranking policy to
O(|J |2), and it is uniquely characterized by a doubly stochastic matrix P c, where [P c]j,k denotes
the probability that stochastic ranking policy P places employer j at rank k. 1 The second equality
further simplifies the expression by using matrix P c and vector v ∈ R|J |+ , where v(rk) = v(rk).
For brevity of notation, let PC = {P c}c∈C denote the rankings we provide for all candidates in the
market, and the probability of initiating a match is a function of PC , hence Pc,j(PC) = r(c, j)eTj P cv.

After all candidates initiate their matchings, then the employers start to act. For each employer j,
the ranking system ranks the candidates who apply to employer j by the employers preference, i.e.,
r(j, c). Let Cj denote the set of candidates who initiates the match to job j and it is worth noting
that Cj is a random set since it depends on how each candidate acts probabilistically. Then after the
employer j sees this ranked list, he will reply back to the matching (i.e., interview the candidate)
based on a similar position-based model.

P(j replies back to c|c applied to j,PC) := Pj,c(PC) = r(j, c)v(rk(c|Cj(PC))) (2)

rk(c|Cj) denotes the rank of candidate c over Cj candidates, where the ranking is determined by
employer j’s preference only. We say a match between candidate employer pair (c, j) is successful
if candidate c initiates the match/applies to employer j, and employer j replies back/interviews
candidate c. Our goal is to design ranking functions for all candidates PC = {P c}c∈C that maximize
the social welfare: the total number of expected matches in the whole market.

SW(PC) =
∑
c∈C

∑
j∈J

P(c and j matches) =
∑
c∈C

∑
j∈J

Pc,j(PC)Pj,c(PC) (3)

3 Rankings in two-sided markets

In this section, we analyze the social welfare objective and derive a tractable lower bound. Under
some specific examination function v(·), we show this lower bound can be solved effectively by
using iterative methods, where each iteration can be solved using off-the-shelf convex optimization
methods.

Recall the expected number of match between each candidate employer pair (c, j) is
Pc,j(PC)Pj,c(PC), with Pc,j(PC) = r(c, j)eTj P cv. Now we are going to analyze Pj,c(PC), the
probability of employer j replying back to candidate i given that all candidates act according to the
examination model underlying PC .

Before going into the detail, we will first introduce the following notation. Let σj(c) ∈ [|C|]n be the
rank of candidate c among all candidates in the set C, where the ranking is in descending order of
r(j, c) for any fixed employer j (we break ties arbitrarily). Similarly, we denote with σc(j) ∈ [|J |]n
the rank of employer j among all employers, where the ranking is based on candidate c’s preference
function r(c, j). Inversely, we define σ−1

j (s) := {k ∈ C|σj(k) = s} be the candidate who is listed
at rank s in employer j’s preference list. Define the priority set for employer j w.r.t. candidate i as
Σj(c) := {k ∈ C|σj(k) < σj(c)}, which include the candidates who receive higher preference to
employer j than candidate i. Based on this, we let F k(j,c) be the set of all subsets of k items that can
be selected from Σj(c), and Ac := C\A be the complement of A for any A ⊆ C. Let Rj,c denotes
the rank of candidate c in employer j’s ranking (depends on r(j, c) and the random set Cj) given c
applied to j, then we have the following lemma w.r.t. the distribution of Rj,c.
Lemma 1. Rj,c is a random variable that lies in {1, 2, · · ·σj(i)}. The distribution of Rj,c − 1 is a
Poisson Binomial Distribution with parameters [Pσ−1

j (1)(PC), Pσ−1
j (2)(PC), · · · , Pσ−1

j (σj(i)−1)(PC)],

1Regarding the question of how to sample rankings given the doubly stochastic matrix P c, the Birkhoff-von
Neumann (BvN) decomposition provides a transformation to decompose a doubly stochastic matrix into a
convex sum of permutation matrices [3, 15].
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which is a vector of probabilities corresponding to the probability of candidate k ∈ Σj(c) initiating
the match with to employer j.

P(Rj,c = k) =
∑

A∈Fk−1
(j,c)

∏
s∈A

Ps,j(PC)
∏
r∈Ac

(1− Pr,j(PC)) (4)

Given Lemma 1, it is easy to see that

Pj,c(PC) = r(j, c)E[v(Rj,c)], (5)

where the randomness is over the probabilistic way of interacting in the market as we introduced in
the previous section. However, the PMF of the Poisson binomial distribution involves n!/((n−k)!k!)
(with n = |Σj(c)| and k ∈ {1, 2, · · · ,Σj(c)}) terms of summation. Though some recursive formula
exists [13], the complicated form w.r.t the Pσ−1

j (s)(PC)’s poses significant challenges when we treat
these probabilities as a function of PC , especially when we eventually perform optimization. Instead,
we work with a lower bound, derived in the following lemma.

Lemma 2. Assume the examination model v(x) is convex, then the lower bound for Pj,c(PC) is:

Pj,c(PC) ≥ r(j, c)v(1 +
∑

k∈Σj(c)

Pk,j(PC)) (6)

Proof. The proof is based on the convexity of v and the simple form of the expectation of Poisson
Binomial R.V.

Pj,c(PC) := r(j, c)E[v(Rj,c)] ≥ r(j, c)v(E[v(Rj,c)]) = r(j, c)v(1 +
∑

k∈Σj(c)

Pk,j(PC)) (7)

It is worth noting that convexity of v is not a restrictive condition, since many popular examination
models (e.g. v(x) = 1/x and v(x) = 1/ log2(1 + x)) satisfy this assumption. Now we are ready
to present our main theorem, which gives a valid and tractable lower bound of the social welfare
objective in Equation 3.

Theorem 3. Assume the examination model v(x) is convex, a lower bound for the SW objective is
given by

SW(PC) ≥ SWlower(PC) :=
∑
c∈C

∑
j∈J

r(c, j)r(j, c)v
(
1 +

∑
k∈Σj(c)

Pk,j(PC)
)
eTj P

cv. (8)

Sub-optimality of the naive preference-based ranking. In the introduction section, we briefly
introduce an example about how naively ranking by each participants preferences will induce collision
and hence reduce the successful matching rate in the networking recommendation example. Here, we
quantify the sub-optimality of naive preference-based ranking using the following theorem.

Theorem 4. In a two-sided market with |C| = |J | = n, there exists an instance of the interaction
model (which is characterized by the choice of preference functions r(c, j), r(j, c), and the examina-
tion model v), such as the gap measured by SWlower(PC) between the optimal ranking P∗C and the
naive preference-based ranking PnaiveC is larger than Θ(

√
n).

The sub-optimality of the naive preference-based ranking motivates optimizing the social welfare
objective directly, or more tractably our lower bound of the social welfare. In this paper, we work
with a specific and widely used examination model v(x) = 1/x afterwards, and show how the lower
bound on SW leads to an efficient optimization procedures. In particular, our social welfare aware
optimization objective becomes:

maximize
P c,c∈C

∑
c∈C

∑
j∈J

r(c, j)r(j, c)eTj P
cv

1 +
∑
k∈Σj(c) r(k, j)e

T
j P

kv

subject to P c is doubly stochastic, c ∈ C
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Recall that v ∈ R|J |+ with v(i) = 1/i. This problem is non-convex. However, the objective is a
sum of ratios, where both numerator and denominator are linear in P c. For single-ratio fractional
programming, the Charnes-Cooper transformation [4] gives an efficient formulation to decouple the
numerator and denominator, and jointly optimizing them. For multi-ratio fractional programming,
[14] gives an equivalent formulation using a quadratic transform. Using the quadratic transform, the
optimization problem is equivalent to:

maximize
P c,y

∑
j∈J

∑
c∈C

(
2ycj

√
r(j, c)r(c, j)eTj P

cv− y2
cj

(
1 +

∑
k∈Σj(c)

r(k, j)eTj P
kv
))

subject to P c is doubly stochastic, ycj ∈ R, ∀c ∈ C, j ∈ J
(9)

For this equivalent formulation, due to the linearity inside the square-root function and the otherwise
linear terms, it is a function concave in P c given fixed ycj . The problem can thus be solved via an
iterative concave-convex procedure:

• Step 1: update ycj using

ycj =

√
r(j, c)r(c, j)eTj P

cv

1 +
∑
k∈Σj(c) r(k, j)e

T
j P

kv
. (10)

• Step 2: update P c for c ∈ C by solving Equation 9 for fixed ycj , which can be solved by
convex optimization algorithms.

This procedure is guaranteed to find the stationary points. The benefits of using this equivalent form
is that it is easy to incorporate additional objectives (see Section 4) in the form of linear constraints
without worrying about projection. The problem can still be solved with the same iterative procedure,
without adding substantial complexity.

4 Social Welfare vs. Individual Utility

While we so far focused on optimizing the overall effectiveness of the matching process, this clearly
raises questions about whether the optimum is fair and desirable to each individual candidate. To
begin to understand the trade-off between social welfare and individual utility, we begin with taking
a game theoretic perspective [8]. In particular, we can view each candidate in the market as an
independent player, where his choice of strategy lies in the selection of his ranking. Consider each
individual’s utility as the expected number of matches over all employers he could get – the higher
the better. In this setting, it is natural to ask: are the action (i.e., the rankings for all candidates)
maximizing the social welfare is also a Nash equilibrium? The answer for this question is no. Social
welfare is not a valid potential function in this game, since in general some player’s best response
could hurt others exposure on the employer’s side, reduce other players’ expected matching rate, and
hence make the social welfare lower. The lack of equilibrium poses an interesting questions: how
strong is the incentive for people to deviate from the presented ranking, and may they even be better
off not participating and using their naive ranking according to their own preferences alone? We
envision that we can control both both aspects by adding constraints into the original optimization
problem.

Constraint 1: No individual is much worse off comparing with not deploying the proposed
ranking. In this constraint, we want to ensure that no individual lose too much in their individual
utility, compared with the case that we do not deploy the social welfare aware ranking in the market.
When we do not deploy the proposed social welfare aware rankings in the market, each individual
will be given the naive greedy preference-based ranking. Under examination model v(x) = 1/x, the
examination probability of candidate c to employer j in the naive preference-based ranking is 1

σc(j) ,

then the probability to initiate the ranking for candidate c to employer j is r(c,j)
σc(j) . Then we are ready

to write our constraints as:
r(j, c)r(c, j)

σc(j)
(
1 +

∑
k∈Σj(c)

r(k,j)
σk(j)

) − rel(j, c)r(c, j)eTj P
cv

1 +
∑
k∈Σj(c) r(k, j)e

T
j P

kv
≤ ε ∀c ∈ C, j ∈ J (11)

Note that these constraints are linear in the P c matrix we want to optimize, therefore we could
incorporate this easily in the aforementioned optimization framework.
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Constraint 2: Limit the incentive of any individual to deviate. We aim to add a constraint so
that at the solution of the global optimization problem, no individual has a strong incentive to
deviate (without access to other individual’s information, such as preference function and rankings
given by the recommender system). This means that given other players playing the recommended
strategy/ranking, the individual will not gain a lot by switching to his personal greedy strategy
(without knowing information about others), and the greedy strategy is just naively ranking this
candidate’s preference list.

r(j, c)r(c, j)

σc(j)
(
1 +

∑
k∈Σj(c) r(k, j)e

T
j P

kv
) − rel(j, c)r(c, j)eTj P

cv
1 +

∑
k∈Σj(c) r(k, j)e

T
j P

kv
≤ ε ∀c ∈ C, j ∈ J (12)

These constraints ensure that each individual does not have a strong incentive to deviate, or no each
individual will deviate if the cost of deviating is greater than ε. Similarly, these constraints are also
linear in P c and could be effectively incorporated in our optimization framework. This enables us to
find the ranking with the highest social welfare, while ensuring a certain stability in of the solution.

5 Experiments

We evaluate our proposed method in a semi-synthetic two-sided ranking environment, and we compare
its performance with the naive ranking based on individual preference. Our secondary goal is to
examine how individual utility is affected by maximizing social welfare, and empirically study the
possible values of ε we could enforce in the constraints.

Dataset and Environment. We simulate preferences in a two-sided markets using the relevance
judgments in the Jester Recommender dataset [5], which contains 4.1 million ratings (ranges from
-10.00 to +10.00) of 100 jokes from 73,496 users. We treat movies as employers, and users as
candidates in the markets. From this dataset, we treat the rating as the candidate’s preference for
the employers. We also need to manually construct employer’s preference for the candidates. This
semi-synthetic framework enables us to examine our proposed method in different markets: (1) the
preferences of the two sides are similar; (2). the preferences of the two sides are reversed (3). the
preferences of the two sides are independent. To construct similar two-sided preferences, we take
r(j, c) = min{max{r(c, j) + e,−10}, 10} with e ∼ N (0, 1); for the reversed preferences, we take
r(j, c) = min{max{−r(c, j) + e,−10}, 10} with e ∼ N (0, 1); for the independent preferences, we
just take r(j, c) ∼ U(−10, 10). Finally we do the min-max normalization for all the preferences to
be in [0, 1].

Evaluation Metric and Results. Due to the intractability of the original utility SW(PC), we
compare the utility of our proposed method and the naive ranking by individual preference using
the lower bound SWlower(PC), which is easy to calculate and can be expected to be a reasonable
surrogate. For the naive ranking of each candidate, we just rank each employer deterministically based
on its preference to the candidate. For our proposed method, we use the iterative concave-convex
procedure proposed in Section 3. In Figure 1, we compare the performance of our proposed method
with the naive rankings, over 6 scenarios: 2 different market sizes (one with |J | = 20 and |C| = 50
and one with |J | = 50 and |C| = 100) and 3 different two-sided preferences settings defined above.
It can be seen that among all scenarios, the globally optimized rankings provide substantially higher
overall utility than the naive rankings. The difference is largest when the preferences on the two sides
are uncorrelated.

We also examine the difference between the individual utility for each candidate under our proposed
ranking and the naive ranking, which corresponds to the first constraint in Section 4. The histogram is
shown in Figure 2. We find that most candidates gain in utility under the globally optimized rankings.
However, in the worst case, we find that some candidates could lose around 0.2, while the gain for
others can be as high as 0.4. This suggests that explicitly constraining the fairness of the solution as
suggested in the previous section is indeed worth considering.

6 Discussion and Future work

In this paper, we have formulated the problem of optimizing rankings in a two-sided matching market,
incorporating a behavioral models of how the ranking focuses the attention of the customers. We find
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Figure 1: Left: Comparison between proposed method and preference-based ranking when |J | = 20
and |C| = 50; Right: Comparison between proposed method and preference-based ranking when
|J | = 50 and |C| = 100.

Figure 2: Histogram of individual utility gain under 3 different environments (same reward, reverse
reward and random reward) when |J | = 50 and |C| = 100.

empirically that globally optimizing the rankings can provide substantial gains in social welfare. To
make this optimization tractable, we identify a lower bound that can be optimized effectively. For a
class examination functions in the position-based model, we propose an efficient iterative algorithm
that reduces to a sequence of convex optimization problems. We also explore the relationship between
social welfare and indiviual utility, viewing the problem from the game theoretic perspective and
proposing additional linear constraints that can control the balance between maximizing social welfare
and achieving stability and aspects of individual fairness.

This paper a number of interesting questions for future work: (1) It will be interesting to empirically
investigate to which extent the collision among candidates happens in the current preference-based
recommendation systems, and evaluate the performance of the proposed methods using real-world
dataset. (2) We assume known preference functions in the proposed framework, it will be important to
extend to the setting with unknown preference function. One direct way may be the use the click data
on both sides to learn the preference functions r̂(c, j) and r̂(j, c). However, we can also view this as a
policy optimization that directly learns the ranking policies using the two-sided click data. (3) In this
paper, we view the ”stability” of the market as no individual wanting to deviate for each employer. It
may also be interesting to view this from an aggregated perspective, i.e., the benefit of deviation is
measured by the individual’s utility across all employers, and how to effectively incorporate this in
our framework.

7



References
[1] Itai Ashlagi, Anilesh K Krishnaswamy, Rahul Makhijani, Daniela Saban, and Kirankumar

Shiragur. Assortment planning for two-sided sequential matching markets. arXiv preprint
arXiv:1907.04485, 2019.

[2] Asia J Biega, Krishna P Gummadi, and Gerhard Weikum. Equity of attention: Amortizing
individual fairness in rankings. In The 41st international acm sigir conference on research &
development in information retrieval, pages 405–414, 2018.

[3] Garrett Birkhoff. Lattice theory, volume 25. American Mathematical Soc., 1940.

[4] Abraham Charnes and William W Cooper. Programming with linear fractional functionals.
Naval Research logistics quarterly, 9(3-4):181–186, 1962.

[5] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A constant time
collaborative filtering algorithm. information retrieval, 4(2):133–151, 2001.

[6] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[7] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. Unbiased learning-to-rank with
biased feedback. In Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining, pages 781–789, 2017.

[8] Fuhito Kojima and Parag A Pathak. Incentives and stability in large two-sided matching markets.
American Economic Review, 99(3):608–27, 2009.

[9] Lydia T Liu, Horia Mania, and Michael Jordan. Competing bandits in matching markets. In
International Conference on Artificial Intelligence and Statistics, pages 1618–1628. PMLR,
2020.

[10] Martin Mladenov, Elliot Creager, Omer Ben-Porat, Kevin Swersky, Richard Zemel, and Craig
Boutilier. Optimizing long-term social welfare in recommender systems: A constrained match-
ing approach. arXiv preprint arXiv:2008.00104, 2020.

[11] Matthew Richardson, Ewa Dominowska, and Robert Ragno. Predicting clicks: estimating the
click-through rate for new ads. In Proceedings of the 16th international conference on World
Wide Web, pages 521–530, 2007.

[12] Stephen E Robertson. The probability ranking principle in ir. Journal of documentation, 1977.

[13] BK Shah. Distribution of sum of independent integer valued random-variables. American
Statistician, 27(3):123–124, 1973.

[14] Kaiming Shen and Wei Yu. Fractional programming for communication systems—part i: Power
control and beamforming. IEEE Transactions on Signal Processing, 66(10):2616–2630, 2018.

[15] Ashudeep Singh and Thorsten Joachims. Fairness of exposure in rankings. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 2219–2228, 2018.

[16] Alfredo Torrico, Margarida Carvalho, and Andrea Lodi. Provable guarantees for general
two-sided sequential matching markets. arXiv preprint arXiv:2006.04313, 2020.

[17] Kun Tu, Bruno Ribeiro, David Jensen, Don Towsley, Benyuan Liu, Hua Jiang, and Xiaodong
Wang. Online dating recommendations: matching markets and learning preferences. In
Proceedings of the 23rd international conference on world wide web, pages 787–792, 2014.

[18] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi.
Fairness beyond disparate treatment & disparate impact: Learning classification without dis-
parate mistreatment. In Proceedings of the 26th international conference on world wide web,
pages 1171–1180, 2017.

[19] Honglei Zhuang, Xuanhui Wang, Michael Bendersky, Alexander Grushetsky, Yonghui Wu,
Petr Mitrichev, Ethan Sterling, Nathan Bell, Walker Ravina, and Hai Qian. Interpretable
learning-to-rank with generalized additive models. arXiv preprint arXiv:2005.02553, 2020.

8



7 Appendix

In this Appendix, we provide proof for Theorem 4, the sub-optimality of the preference-based
ranking.

Sub-optimality of naive ranking. Here we show that the gap of the naive ranking algorithm and
the optimal solution by our algorithm can be O(

√
n), and it is achieved by identifying some specific

instance (particular choice of preference model, examination model). Consider the following instance:
there are n employers and n candidates in the market. On the candidate side, they have highly
correlated preference over employers, while employers have different preference over candidates.
The employers’ preference ordering is given by:

j1 c1 c2 c3 · · · cn
j2 c2 c3 · · · cn c1
j3 c3 · · · cn c1 c2
...

...
jn cn c1 · · · cn−2 cn−1

while the candidates’ preference ordering is:

c1 j1 j2 j3 · · · jn
c2 j1 j2 j3 · · · jn
c3 j1 j2 j3 · · · jn
...

...
cn j1 j2 j3 · · · jn

Given this, the preference function is defined by:

rel(ci, jk) =
1√
k

rel(jk, ci) =
1√

σjk(ci)

The examination model Em in this case is given by:

v(x) =

{
1/x, if x ≤ m
0, otherwise

This mimic the scenario that even the market size n grows, people tends to only examine the top m
recommendations due to time and resource constraints. The naive ranking in this case corresponds
to ignoring the two-side perspective, and only recommending the employer to candidates by their
preference to the candidates. Therefore, the optimal doubly stochastic matrix should be deterministic
and it is given by

P ci = In

for all the candidates ci, since they have the same preference judgment. For ease of notation, we let
cjk(i) denotes the candidate who is in rank i in employer jk’s preference list. The utility of the naive
ranking is given by:

SWlower(PnaiveC ) =

n∑
k=1

n∑
i=1

rel(jk, cjk(i))rel(cjk(i), jk)

1 +
∑i−1
q=1 rel(cjk(q), jk)eTj P

cjk(q)v
eTj P

cjk(i)v

=

m∑
k=1

m∑
i=1

1√
k

1√
i

1 + (i− 1)( 1√
k

1
k )

1

k

≤
m∑
k=1

1

k3/2

m∑
i=1

1√
i

:= f(m)

(13)

Here we consider a different ranking Ps, which is also deterministic and given by:

P cikl =

{
1, if rk(ci) = l for employer jk
0, otherwise

9



P ci is a doubly stochastic matrix from our design, note this comes from the fact rk(ci) is different
for different jk. The utility for this specific ranking Ps is given by:

SWlower(PsC) =

n∑
k=1

n∑
i=1

rel(jk, cjk(i))rel(cjk(i), jk)

1 +
∑i−1
q=1 rel(cjk(q), jk)eTj P

cjk(q)v
eTj P

cjk(i)v

=

n∑
k=1

m∑
i=1

1√
k

1√
i

1 + 1√
k

∑i−1
q=1( 1

q )

1

i

≥ (m−3/2)

n∑
k=1

1√
k +

∑m
i=1

1
i

= Θ(
√
n)

(14)

Therefore, we have SWlower(P∗C) − SWlower(PnaiveC ) ≥ SWlower(PsC) − SWlower(PnaiveC ) =
Θ(
√
n) for fixed m.
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